A-x= 4

PO

S

Te

N W~ Kdy pe o 4) W KAy S e
/WL*A/Z/Z,:,-— /—Z
W s kS48 28

/,/\.z/ etn Db it a//_i WM W Con /ﬂb

%7': (f(ﬂ})
o At = Lot
TortrreAt'cn X
- JRL
3 ~ +/A)@ﬂ9,%, +hy o

Ay
\
>|6
n
2
~
1
—_
D
?
‘ﬁ\
3
~
-
O
&} }
O? N
{
-

B. Odd-Even Transposition

The odd-even transposition algorithm sorts n elements in n phases (n is even), each of which requires
n/2 compare-exchange operations. This algorithm alternates between two phases, called the odd
and even phases. Let <ay, ay, ..., a,> be the sequence to be sorted. During the odd phase, elements
with odd indices are compared with their right neighbors, and if they are out of sequence they are
exchanged; thus, the pairs (ai, a2), (as, as), ..., (an1, an) are compare-exchanged (assuming n is even).
Similarly, during the even phase, elements with even indices are compared with their right
neighbors, and if they are out of sequence they are exchanged; thus, the pairs (a2, a3), (as, as), .., (an-
», an-1) are compare-exchanged. After n phases of odd-even exchanges, the sequence is sorted. Each
phase of the algorithm (either odd or even) requires ®(n) comparisons, and there are a total of n
phases; thus, the sequential complexity is ©®(n?). The odd-even transposition sort is shown in
Algorithm 9.3 and is illustrated in Figure 9.13.

Figure 9.13. Sorting n = 8 elements, using the odd-even transposition sort algorithm. During each
phase, n = 8 elements are compared.

Unsorted

3 2 3 8 5 6 4 1
L 1 L L L] et coam
103 3 8 5 & 1 4

|__| | | l Phase I (even)
7 3 3 5 8% 1 & 4
L L L L Phases odd
2 03 3 5 1 8 4 &6

[B%]
Lt
[*5)
ey
i
k
(]
L2

s
o
5
]
b
S
5
Pt}
.
&

(]
Lad
C
L
L— &
.
ohy
[e2]

.

Phass § (evem)

(2]
-
U
L
—
LA
o
&3

)
=
va
2]
4]
-
é‘
E;

[y
bt
(¥
L
.
LA
o
(]

¥
=
f=
i23
1)
Lo
e
]
-
i
LA)x.x

s
P
(W)

53
e
wh
Lo
[2=]

Sorted

9.3 Sequential odd-even transposition sort algorithm.

1. procedure ODD-EVEN(n)

2. begin

3. fori:=1tondo

4, begin

5. if < is odd then

6. forj:=0ton/2 — 1do

7 compare-exchange(asji1, asj+2):
8. if + Is even then

9. forj:=1ton/2 —1do

10. compare-exchange(as;, azj1);
11. end for

12. end ODD-EVEN

Parallel Formulation

It is easy to parallelize odd-even transposition sort. During each phase of the algorithm,
compare-exchange operations on pairs of elements are performed simultaneously. Consider
the one-element-per-process case. Let n be the number of processes (also the number of
elements to be sorted). Assume that the processes are arranged in a one-dimensional array.
Element a; initially resides on process P; for i =1, 2, ..., n. During the odd phase, each process
that has an odd label compare-exchanges its element with the element residing on its right
neighbor. Similarly, during the even phase, each process with an even label compare-
exchanges its element with the element of its right neighbor.

To= ,':) \ ,”.'A/'If/,: - A y pa— %1,1\’ % ////, - @ (///\,/m)
4\
Isoefficiency function: L9 (A2)
Maximum number of processors that can be used to solve this problem cost-optimally: .../ = O i ;@3 o)

Scalability: poorly scalable / highly-scalable

% P /@5”6, N
\ —
) 2 O (409 L LA S
’ Ve VRN - » N
174 <
bl == M. T F A
(7) = Q2" 7~ T
7]
Vaas /@C”&"y o Pase x’f/ "’;‘ N
e s S o e s —————
L ™
A P FARS s / 5
L e~ o ¢ 7/ 7
Mﬁf 7 -+ — /v e ,vc—(c}, P . N X&fé. Iere, . 4 M- ,a!““?; “
o o

A. Minimum Spanning Tree: Prim's Algorithm

A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of
G. In a weighted graph, the weight of a subgraph is the sum of the weights of the edges in the subgraph.
A minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum
weight. Many-problems-require fi i s

nding -\ O—-ahn =% @ a AP O QAR T [

ectaseto
D &

4 S et e a

undirected graph.

Figure 10.4. An undirected graph and its minimum spanning tree.

Algorithm 10.1 Prim's sequential minimum spanning tree algorithm.

1. procedure PRIM_MST(V, E, w. r)

2. begin

3. V= {r};

4. dir] == 0;

5. forallv e (V — Vp) do

b. if edge (r, v) exists set d[v] := w(r. v):
7. else setf d[v] := =

8. while Vi = V do

9. begin

10. find a vertex u such that d[u] := min{dv]jv € (V — Vp) |
1. Vi = Vip U {u}:

12, forallv € (V — V) do

13. d[v] := min{d[v], w(u, v) }:

14. endwhile

15, end PRIM_MST

Parallel Formulation

Prim's algorithm is iterative (see Algorithm 10.1). Each iteration adds a new vertex to the
minimum spanning tree. Since the value of d[v] for a Vertex@qay change every time a new
vertex@is added in VT, it is hard to select more than one vertex to include in the minimum
spanning tree. However, each iteration can be performed in parallel as follows.

Let@be the number of processes, and let@e the number of vertices in the graph. The set V is
partitioned into@ subsets using the 1-D block mapping (Section 3.4.1). Each subset has n/p
consecutive vertices, and the work associated with each subset is assigned to a different process.
Let Vi be the subset of vertices assigned to process Pi for i =0, 1, ..., p - 1. Each process P;
stores the part of the array d that corresponds to Vi (that is, process P; stores d [v] such that
veVi). Figure 10.6(a) illustrates the partitioning. Each process Pi computes di[u] = min{d;[v]|v
€ (V- V1) N Vi} during each iteration of the while loop. The global minimum is then obtained
over all dj[u] by using the all-to-one reduction operation (Section 4.1) and is stored in process
Py. Process Py now holds the new vertex u, which will be inserted into V1. Process Py broadcasts
u to all processes by using one-to-all broadcast (Section 4.1). The process P; responsible for
vertex u marks u as belonging to set Vr. Finally, each process updates the values of d[v] for its
local vertices.

Figure 10.6. The partitioning of the distance array d and the adjacency matrix A among p

processes. L
n ¢ s T
| - I Mfl Q
P —}-j + Ay
dil.n] | | |- | |- (@ ’
ra

e I Il
NN I I
e I 11
RN I Il
[RNER I Il
IRRREN | I T
NRRER! I 1l s
(AR I I o SR
1] ED | seeden FIT] mm somene 1l T T
A AR N | 7) "+ Al O~ g
RN iy 11 7
RERERR oy 1 G
Perfren N 1 Y,
Lerfen N 1l f P ~
Perfen I 1l
EERERE N KN %" " }f"‘c’é.
Prrfen iy 1 Krere
RN I 1
Frrprna [N [N
Processors 0 1 i p-i

When a new vertex u is inserted into Vr, the values of d[v] for v € (V - V1) must be updated. The process
responsible for v must know the weight of the edge (u, v). Hence, each process P; needs to store the
columns of the weighted adjacency matrix corresponding to set V; of vertices assigned to it. This
corresponds to 1-D block mapping of the matrix (Section 3.4.1). The space to store the required part
of the adjacency matrix at each process is ®(n?/p). Figure 10.6(b) illustrates the partitioning of the
weighted adjacency matrix.

Tp= O | ?) + o~ Ko </Q\5 ® () = © ,v'/‘& v r"q*’% 71/‘,‘

W:f."/mz) | i)\ > B4 'A“s)' 7~ / \
To=.0) (/W o 77"." / “ ('Al) i @(# /&?v'/’/i ‘
Isoefficiency function: ... (& (/*) T ”H_q_____ﬁ/_}

Maximum number of processors that can be used to solve this problem cost-optimally: ...

:ﬂ { ~n ~ /‘) (,’L _’C,:~(A |
Scalability: peorly-scalable / highly scalable L MG T i
Y. POOrky ghly 0[}[} = Of ”» + // g ,L/
¢ & (Ley 7/
d(~)= 6 (£ < 7))
/ /i }‘ - 74 - Ok

C. Matrix-Matrix Multiplication - A Simple Parallel Algorithm

Consider two 7 x n matrices A and B partitioned into p blocks Ajjand Bij 0 <k < Vk of size
(n/\/;) X (n/\/E) each. These blocks are mapped onto a \/E X \/5 logical mesh of processes.
The processes are labeled from Po to P g_1 5-1. Process Pij initially stores Ajj and Bij and
computes block Cij of the result matrix. Computing submatrix Cij requires all submatrices A
and By for (0<i,j < \/E). To acquire all the required blocks, an all-to-all broadcast of matrix
A's blocks is performed in each row of processes, and an all-to-all broadcast of matrix B's
blocks is performed in each column. After Pij acquires Ao, ..., A; -1 and Boy, ..., A 51 s
it performs the submatrix multiplication and addition step of lines 7 and 8 in Algorithm 8.3.

Performance and Scalability Analysis The algorithm requires two all-to-all broadcast steps (each
consisting of 1/p concurrent broadcasts in all rows and columns of the process mesh) among groups of
\/p processes. The messages consist of submatrices of n?/p elements. From Table 4.1, the total
communication time is 2(¢ log(+/p) + tw (W*/p)(v/p-1)). After the communication step, each process
computes a submatrix Cij, which requires y/p multiplications of (n/\Jp) % (n\[p) submatrices (lines 7

and 8 of Algorithm 8.3 with g = +/p.

Algorithm 8.3 The block matrix multiplication algorithm for n x n matrices with a block size of (n/q) x

(n/q). ~
Pas
1. procedure BLOCK MAT MULT (A, B, C) 5= o~ _:j+ lgﬂj
2. begin P L o
3 for i := 0 to g - 1 do
4. for j := 0 to g - 1 do
G begin
6. Initialize all elements of Ci,y to zero;
7. for k := 0 to g - 1 do
8. Ci,j = Ci,y + Aj,x X Bg,j; ,
9. endfor; £ B __A"“ D
. end BLOCK_MAT_MULT - 2
10 _MAT_ g \Jrfv s ,&é P
N/ P o T P 5 P A)
Y " ! o S ¢
i vd + g P 4 A "’.\h
o= (7 s e R

:1‘&«)

Isoefficiency function: ..& (%)
Maximum number of processors that can be used to solve this problem cost-optimally: W

Scalability: peertyscatable / highly scalable s)
"7.' ~ 7/ ,‘/.“ 45,‘~"," (:'3 <k—a) - (}) {/.,/’-\, ,.f..;-z s y 4 @ (/L’\) = ‘xa '\ ",.1'7/

