
Parallel programming
C++11 threads

Part 2
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Lab topics

● Future, promise – synchronized access to values

– e.g., returning values from threads

● Executing tasks by async object.

● Atomic types in C++11

● Exercise – barrier and odd-event sort
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Promise object

● promise is used to store a value that is 
subsequently obtained by using the associated 
future object (synchronization point) in another 
thread.

● promise API:
– https://en.cppreference.com/w/cpp/thread/promise
– promise<T> prom; // creation
– future<T> fut = prom.get_future(); // get related obj
– prom.set_value (T()); // set promised value

https://en.cppreference.com/w/cpp/thread/promise
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Future object

● future object is used to obtain a from a thread
● if value is not yet available:

– blocks until the value is computed (wait)
– waits some time (wait_for, wait_until)

● future API:
– https://en.cppreference.com/w/cpp/thread/future
– T val = fut.get(); // get the returned value

https://en.cppreference.com/w/cpp/thread/future
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Promise and future example

lab_codes/PromiseAndFuture.cpp
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Async

● High-level API for running a thread that may return a value

● async executes a function asynchronously, i.e., without waiting for its 
completion and possibly with a delayed start

● async policy:

– launch::async – creates a new thread

– launch::deferred – function is started after its return value is requested 
(by using future object). Possible that does not create a new thread!

● If the value of future is not requested, the function won’t start

● Async API:

– https://en.cppreference.com/w/cpp/thread/async

– Execute the function asynchronously.
● future<T> ret = async(function, params…);

– Notice that the following blocks (async() waits for destructor of future)
● async(lauch::async, function, params…);

https://en.cppreference.com/w/cpp/thread/async
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Async example

lab_codes/Async.cpp
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Atomicity in C++11

● Atomic operations are indivisible, i.e. they 
behave like one instruction.

● Useful for a non-blocking synchronization 
between threads.

● Often lock-free for integer types.
● Atomic operation:

– load value
– modify value
– write value += operation must be indivisible!

int x = 0;
x += 5;

atomic<int> x(0);
x.fetch_add(5);
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Atomicity in C++11

● https://en.cppreference.com/w/cpp/atomic/atomic
● Basic operations with atomic class:

– load, store
– operator++, operator--
– fetch_add, fetch_sub, fetch_and, fetch_or, fetch_xor...
– bool compare_exchange_strong (T& expected, T 

desired)
● Sets the contained value to be desired if the contained 

value equals the expected value
● true if expected is the same as the contained value

https://en.cppreference.com/w/cpp/atomic/atomic
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Atomic example

lab_codes/AtomicCounter.cpp
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Main exercise – barrier

● API
– Barrier(int numThreads);
– Barrier.wait();

● synchronization of n threads
● threads wait on barrier until the last thread calls 

wait, which releases the barrier
● The barrier must be reusable, i.e., it can be 

released multiple times
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Main exercise – barrier
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Main exercise – barrier

● Hints:
– Use two atomic variables and busy waiting
– One atomic variable counts the number of waiting 

threads
– Second atomic variable counts the barrier releases 

(phase counter)
● Last thread use this variable to signal the release of 

barrier to other threads 

● Advanced: replace busy waiting with waiting 
on a conditional variable
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Additional exercise - sorting

● Write a parallel program for odd-even sort
– Split the input array into numThreads * 2 buckets 

– Initially, each thread sorts two buckets 

6,3,9,1,9,7,2,6,2,1,6,5,7,6,4,4,2,3,9,6,7,9,2,6

6,3,9,1 9,7,2,6 7,6,4,42,1,6,5 2,3,9,6 7,9,2,6

– Iteratively and in parallel merge adjacent buckets 

1,3,6,9 2,6,7,9 4,4,6,71,2,5,6 2,3,6,9 2,6,7,9
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Additional exercise - sorting
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● Use barrier to synchronize threads between 
phases 
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