
Parallel programming
C++11 threads

Part 2



2

Lab topics

● Future, promise – synchronized access to values

– e.g., returning values from threads

● Executing tasks by async object.

● Atomic types in C++11

● Exercise – barrier and odd-event sort



3

Promise object

● promise is used to store a value that is 
subsequently obtained by using the associated 
future object (synchronization point) in another 
thread.

● promise API:
– https://en.cppreference.com/w/cpp/thread/promise
– promise<T> prom; // creation
– future<T> fut = prom.get_future(); // get related obj
– prom.set_value (T()); // set promised value

https://en.cppreference.com/w/cpp/thread/promise


4

Future object

● future object is used to obtain a from a thread
● if value is not yet available:

– blocks until the value is computed (wait)
– waits some time (wait_for, wait_until)

● future API:
– https://en.cppreference.com/w/cpp/thread/future
– T val = fut.get(); // get the returned value

https://en.cppreference.com/w/cpp/thread/future


5

Promise and future example

lab_codes/PromiseAndFuture.cpp



6

Async

● High-level API for running a thread that may return a value

● async executes a function asynchronously, i.e., without waiting for its 
completion and possibly with a delayed start

● async policy:

– launch::async – creates a new thread

– launch::deferred – function is started after its return value is requested 
(by using future object). Possible that does not create a new thread!

● If the value of future is not requested, the function won’t start

● Async API:

– https://en.cppreference.com/w/cpp/thread/async

– Execute the function asynchronously.
● future<T> ret = async(function, params…);

– Notice that the following blocks (async() waits for destructor of future)
● async(lauch::async, function, params…);

https://en.cppreference.com/w/cpp/thread/async


7

Async example

lab_codes/Async.cpp



8

Atomicity in C++11

● Atomic operations are indivisible, i.e. they 
behave like one instruction.

● Useful for a non-blocking synchronization 
between threads.

● Often lock-free for integer types.
● Atomic operation:

– load value
– modify value
– write value += operation must be indivisible!

int x = 0;
x += 5;

atomic<int> x(0);
x.fetch_add(5);



9

Atomicity in C++11

● https://en.cppreference.com/w/cpp/atomic/atomic
● Basic operations with atomic class:

– load, store
– operator++, operator--
– fetch_add, fetch_sub, fetch_and, fetch_or, fetch_xor...
– bool compare_exchange_strong (T& expected, T 

desired)
● Sets the contained value to be desired if the contained 

value equals the expected value
● true if expected is the same as the contained value

https://en.cppreference.com/w/cpp/atomic/atomic


10

Atomic example

lab_codes/AtomicCounter.cpp



11

Main exercise – barrier

● API
– Barrier(int numThreads);
– Barrier.wait();

● synchronization of n threads
● threads wait on barrier until the last thread calls 

wait, which releases the barrier
● The barrier must be reusable, i.e., it can be 

released multiple times



12

Main exercise – barrier

Active

Active

Active

T
1

T
2

T
n

Waiting

Waiting

Barrier release

Active

Active

Active

time

wait()

wait()

wait()

Waiting

Waiting

wait()

wait()

Barrier release

wait()

last thread to
enter barrier

last thread to
enter barrier



13

Main exercise – barrier

● Hints:
– Use two atomic variables and busy waiting
– One atomic variable counts the number of waiting 

threads
– Second atomic variable counts the barrier releases 

(phase counter)
● Last thread use this variable to signal the release of 

barrier to other threads 

● Advanced: replace busy waiting with waiting 
on a conditional variable



14

Additional exercise - sorting

● Write a parallel program for odd-even sort
– Split the input array into numThreads * 2 buckets 

– Initially, each thread sorts two buckets 

6,3,9,1,9,7,2,6,2,1,6,5,7,6,4,4,2,3,9,6,7,9,2,6

6,3,9,1 9,7,2,6 7,6,4,42,1,6,5 2,3,9,6 7,9,2,6

– Iteratively and in parallel merge adjacent buckets 

1,3,6,9 2,6,7,9 4,4,6,71,2,5,6 2,3,6,9 2,6,7,9

T
1

T
1

T
2

T
2

T
3

T
3



15

Additional exercise - sorting

1,3,6,9 2,6,7,9 4,4,6,71,2,5,6 2,3,6,9 2,6,7,9

merge

merge merge

T
1

T
2

T
3

Odd phase

1,2,3,6 6,7,9,9 5,6,6,71,2,4,4 2,2,3,6 6,7,9,9 Even phase
T

1
T

2

merge

merge

1,2,3,6 1,2,4,4 2,2,3,56,7,9,9 6,6,6,7 6,7,9,9 Odd phase

merge merge merge

T
1

T
2 T

3

● Use barrier to synchronize threads between 
phases 


	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15

