
Parallel programming
C++11 threads

Part 1
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C++11 threads? - What is it?

● A new standard of C++11 defines API for threads and 
synchronization primitives.

● As the standard is accepted by all the modern compilers, 
it is portable to the majority of operating systems.

● More high-level than pthreads, easier to write clean code.

● Disadvantages:

– Not all synchronization primitives are implemented, 
e.g., barriers

– A modern compiler is needed.
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How to use C++11 threads

● C++11 threads require to:
– include thread header to your source code

#include <thread>

– add pthread static library and c++11 support to 
compilation process (for compilation with gcc, clang 
or MinGW)

g++ main.cpp –std=c++11 -pthread

– in case of Cmake (multiplatform)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
find_package(Threads)
# set sources, add executable ...
target_link_libraries(${PROJECT_NAME} ${CMAKE_THREAD_LIBS_INIT})
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Thread creation - constructor

● thread thread( Function&& start_routine, Args&&... args );

● Parameters:

– start_routine – function that will be executed by the thread

– args – arguments for the start_routine function 

● if the start_routine is a class member function, the first argument in 
args has to be the instance of that class
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Thread termination

● Thread terminates when:

– It reaches the end of the start_routine

– It calls return;

● Note:

– The thread releases its stack during termination.

– Return value
● It is not possible to obtain return code from thread
● If you need to return a value you have to use... hmm... no, wait for next 

week ;-)
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Joining threads

● void thread.join()
– The calling thread waits for the callee thread to terminate.
– It is not possible to join one thread more than once.

● bool thread.joinable() - checks if it is possible to join the thread
– A finished thread that was not joined yet is joinable!

– Not joining a thread leads to a process crash (if thread is joinable, its destructor calls 
std::terminate())

● Can be mitigated by calling thread.detach(), although it is not recommended 
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
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Hello world!

lab_codes/HelloThreads.cpp
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Counting with threads

● Example – Counter
– Task:

● Create global integer variable counter
● Create 4 threads and each thread:

– 10000000-times increment the counter

● Print the resulting value of the counter after all the 
threads are done!
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Counter – first try

lab_codes/CounterFirstTry.cpp
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4 * 10000000 = ??? 

● Something is wrong... probably.

● Don't worry. We are gonna take a look where is a mistake!
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The risks of multi-threaded programming

● Let's assume that a well-known bank company has asked you to implement a multi-
threaded code to perform bank transactions.

● You start with the modest goal of allowing deposits.
● Clients deposit money and the amount gets credited to their accounts.
● As a result of having multiple threads running concurrently the following can happen:

Thread 0 Thread 1 Account balance

Client requests a deposit Client requests a deposit 0 CZK

Check current balance = 0 
CZK

0 CZK

Check current balance = 0 CZK 0 CZK

Ask for deposit 1000 CZK Ask for deposit 2000 CZK 0 CZK

Compute new balance = 2000CZK 0 CZK

Compute new balance = 
1000CZK

Write new balance to account 2000 CZK

Write new balance to 
account

1000 CZK
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Race condition

● The problem is that many operations “take time” and can be 
“interrupted” by other threads attempting to modify the same data.

● This is called a race condition: the final result depends on the 
precise order in which the instructions are executed.

● Unless Thread 0 completes its update before Thread 1 (or vice 
versa) we get an incorrect result.

● This issue is addressed using mutexes (mutual exclusion).
● They ensure that shared data are accessed and modified by a single 

thread.
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Mutex

● A mutex can only be in two states: locked or unlocked.
● Once a thread locks a mutex:

– Other threads attempting to lock the same mutex are blocked.
– Only the thread that initially locked the mutex has the ability to unlock it.

● This allows to protect regions of code.
● Typical mutex workflow:

– Create and initialize a mutex variable
– Several threads attempt to lock the mutex
– Only one succeeds and that thread owns the mutex (other threads are blocked)
– The owner thread performs some set of actions
– The owner unlocks the mutex
– Another thread acquires the mutex and repeats the process
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Mutex in C++11 threads - API

● #include <mutex>
– Include the header file with mutex object

● mutex mutex;

– Creates new mutex.

● void mutex.lock()
– Locks a mutex; blocks if another thread has locked this mutex and owns it.

● void mutex.unlock()
– Unlocks mutex; after unlocking, other threads get a chance to lock the mutex.

● bool mutex.try_lock()
– Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise 

returns false.
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Lock guard - API

● The mutexes can be encapsulated by lock_guard classes, 
that simplify the usage, e.g., they automatically unlock the 
held mutex during their destruction (exceptions) – RAII idiom.
– lock_guard<mutex> lock_guard(mutex_type& m)

● Takes mutex m and and locks it. Mutex is unlocked when the lock 
guard is destroyed (e.g., goes out of scope).

● Use unique_lock for more advanced use cases.



16

It is time to repair our counter!

● Now, you know how to repair our Counter 
example.

● So, let's do it.
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Counter – second try

lab_codes/CounterSecondTry.cpp
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Everything repaired?

● Tool rental simulator
– Rental shop offers – hammer, screwdriver, saw
– Three handy guys:

1) Libor: Borrow hammer, work, borrow screwdriver, work, return all

2) Honza: Borrow screwdriver, work, borrow saw, work, return all

3) Premek: Borrow saw, work, borrow hammer, work, return all

– They are doing that repeatedly.

– Work means a short delay.
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Tool rental – first try

lab_codes/ToolRentalFirstTry.cpp
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It is stuck somehow - Deadlock

● Guy Libor borrows a hammer and work
● Guy Honza borrows a screwdriver and work
● Guy Premek borrows a saw and work
● Guy Libor needs a screwdriver – waits for it
● Guy Honza needs a saw – waits for it
● Guy Premek needs a hammer – waits for it
● No one returns anything in this case.
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Solution?

● After using a tool, return it.
● Use an additional mutex for acquiring multiple 

tools.
● Or...
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Condition variables

● Allows signaling among threads
● Threads can wait until some event occurs
● Another thread wakes up the waiting thread 

and inform it that the situation already occurred
● The woken up thread should check if all 

conditions are fulfilled and then continues.
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Condition variables - API

● #include <condition_variable>
– Include the header with the condition variable interface

● void condition_variable.notify_one()

– Sends a signal to a single thread waiting on condition variable.

● void condition_variable.notify_all()

– Sends a signal to all threads waiting for condition_variable.

● void condition_variable.wait(unique_lock<mutex>& lock)
– Unlocks lock and puts the thread to sleep until another thread wake it up 

by sending a signal. When the thread is woken up lock is locked again.

● void condition_variable.wait(unique_lock<mutex>& lock, Predicate pred)
– Semantically equals to:

{
unique_lock<mutex> lk(mtx)
cv.wait(lk);
compute_something();

}

while (!pred())
cv.wait(lk);
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It is time to repair our counter!

● Now, you should be able to repair our Tool 
rental simulator example.

● So, let's do it.
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Tool rental – second try

lab_codes/ToolRentalSecondTry.cpp
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References

● Tutorial to C++11 concurrency:
– C++11 Multithreading

● C++11 threads standard
– http://en.cppreference.com/w/cpp/thread

● An introduction to Parallel programming
– Peter Pacheco, University of San Francisco
– Morgan Kaufmann Publishers is an imprint of Elsevier

● Top 20 C++ threads mistakes

http://thispointer.com/c-11-multithreading-part-1-three-different-ways-to-create-threads/
http://en.cppreference.com/w/cpp/thread
http://www.acodersjourney.com/2017/08/top-20-cplusplus-multithreading-mistakes/
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