
Parallel programming
C++11 threads

Part 1

2

C++11 threads? - What is it?

● A new standard of C++11 defines API for threads and
synchronization primitives.

● As the standard is accepted by all the modern compilers,
it is portable to the majority of operating systems.

● More high-level than pthreads, easier to write clean code.

● Disadvantages:

– Not all synchronization primitives are implemented,
e.g., barriers

– A modern compiler is needed.

3

How to use C++11 threads

● C++11 threads require to:
– include thread header to your source code

#include <thread>

– add pthread static library and c++11 support to
compilation process (for compilation with gcc, clang
or MinGW)

g++ main.cpp –std=c++11 -pthread

– in case of Cmake (multiplatform)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
find_package(Threads)
set sources, add executable ...
target_link_libraries(${PROJECT_NAME} ${CMAKE_THREAD_LIBS_INIT})

4

Thread creation - constructor

● thread thread(Function&& start_routine, Args&&... args);

● Parameters:

– start_routine – function that will be executed by the thread

– args – arguments for the start_routine function

● if the start_routine is a class member function, the first argument in
args has to be the instance of that class

5

Thread termination

● Thread terminates when:

– It reaches the end of the start_routine

– It calls return;

● Note:

– The thread releases its stack during termination.

– Return value
● It is not possible to obtain return code from thread
● If you need to return a value you have to use... hmm... no, wait for next

week ;-)

6

Joining threads

● void thread.join()
– The calling thread waits for the callee thread to terminate.
– It is not possible to join one thread more than once.

● bool thread.joinable() - checks if it is possible to join the thread
– A finished thread that was not joined yet is joinable!

– Not joining a thread leads to a process crash (if thread is joinable, its destructor calls
std::terminate())

● Can be mitigated by calling thread.detach(), although it is not recommended
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread

7

Hello world!

lab_codes/HelloThreads.cpp

8

Counting with threads

● Example – Counter
– Task:

● Create global integer variable counter
● Create 4 threads and each thread:

– 10000000-times increment the counter

● Print the resulting value of the counter after all the
threads are done!

9

Counter – first try

lab_codes/CounterFirstTry.cpp

10

4 * 10000000 = ???

● Something is wrong... probably.

● Don't worry. We are gonna take a look where is a mistake!

11

The risks of multi-threaded programming

● Let's assume that a well-known bank company has asked you to implement a multi-
threaded code to perform bank transactions.

● You start with the modest goal of allowing deposits.
● Clients deposit money and the amount gets credited to their accounts.
● As a result of having multiple threads running concurrently the following can happen:

Thread 0 Thread 1 Account balance

Client requests a deposit Client requests a deposit 0 CZK

Check current balance = 0
CZK

0 CZK

Check current balance = 0 CZK 0 CZK

Ask for deposit 1000 CZK Ask for deposit 2000 CZK 0 CZK

Compute new balance = 2000CZK 0 CZK

Compute new balance =
1000CZK

Write new balance to account 2000 CZK

Write new balance to
account

1000 CZK

12

Race condition

● The problem is that many operations “take time” and can be
“interrupted” by other threads attempting to modify the same data.

● This is called a race condition: the final result depends on the
precise order in which the instructions are executed.

● Unless Thread 0 completes its update before Thread 1 (or vice
versa) we get an incorrect result.

● This issue is addressed using mutexes (mutual exclusion).
● They ensure that shared data are accessed and modified by a single

thread.

13

Mutex

● A mutex can only be in two states: locked or unlocked.
● Once a thread locks a mutex:

– Other threads attempting to lock the same mutex are blocked.
– Only the thread that initially locked the mutex has the ability to unlock it.

● This allows to protect regions of code.
● Typical mutex workflow:

– Create and initialize a mutex variable
– Several threads attempt to lock the mutex
– Only one succeeds and that thread owns the mutex (other threads are blocked)
– The owner thread performs some set of actions
– The owner unlocks the mutex
– Another thread acquires the mutex and repeats the process

14

Mutex in C++11 threads - API

● #include <mutex>
– Include the header file with mutex object

● mutex mutex;

– Creates new mutex.

● void mutex.lock()
– Locks a mutex; blocks if another thread has locked this mutex and owns it.

● void mutex.unlock()
– Unlocks mutex; after unlocking, other threads get a chance to lock the mutex.

● bool mutex.try_lock()
– Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise

returns false.

15

Lock guard - API

● The mutexes can be encapsulated by lock_guard classes,
that simplify the usage, e.g., they automatically unlock the
held mutex during their destruction (exceptions) – RAII idiom.
– lock_guard<mutex> lock_guard(mutex_type& m)

● Takes mutex m and and locks it. Mutex is unlocked when the lock
guard is destroyed (e.g., goes out of scope).

● Use unique_lock for more advanced use cases.

16

It is time to repair our counter!

● Now, you know how to repair our Counter
example.

● So, let's do it.

17

Counter – second try

lab_codes/CounterSecondTry.cpp

18

Everything repaired?

● Tool rental simulator
– Rental shop offers – hammer, screwdriver, saw
– Three handy guys:

1) Libor: Borrow hammer, work, borrow screwdriver, work, return all

2) Honza: Borrow screwdriver, work, borrow saw, work, return all

3) Premek: Borrow saw, work, borrow hammer, work, return all

– They are doing that repeatedly.

– Work means a short delay.

19

Tool rental – first try

lab_codes/ToolRentalFirstTry.cpp

20

It is stuck somehow - Deadlock

● Guy Libor borrows a hammer and work
● Guy Honza borrows a screwdriver and work
● Guy Premek borrows a saw and work
● Guy Libor needs a screwdriver – waits for it
● Guy Honza needs a saw – waits for it
● Guy Premek needs a hammer – waits for it
● No one returns anything in this case.

21

Solution?

● After using a tool, return it.
● Use an additional mutex for acquiring multiple

tools.
● Or...

22

Condition variables

● Allows signaling among threads
● Threads can wait until some event occurs
● Another thread wakes up the waiting thread

and inform it that the situation already occurred
● The woken up thread should check if all

conditions are fulfilled and then continues.

23

Condition variables - API

● #include <condition_variable>
– Include the header with the condition variable interface

● void condition_variable.notify_one()

– Sends a signal to a single thread waiting on condition variable.

● void condition_variable.notify_all()

– Sends a signal to all threads waiting for condition_variable.

● void condition_variable.wait(unique_lock<mutex>& lock)
– Unlocks lock and puts the thread to sleep until another thread wake it up

by sending a signal. When the thread is woken up lock is locked again.

● void condition_variable.wait(unique_lock<mutex>& lock, Predicate pred)
– Semantically equals to:

{
unique_lock<mutex> lk(mtx)
cv.wait(lk);
compute_something();

}

while (!pred())
cv.wait(lk);

24

It is time to repair our counter!

● Now, you should be able to repair our Tool
rental simulator example.

● So, let's do it.

25

Tool rental – second try

lab_codes/ToolRentalSecondTry.cpp

26

References

● Tutorial to C++11 concurrency:
– C++11 Multithreading

● C++11 threads standard
– http://en.cppreference.com/w/cpp/thread

● An introduction to Parallel programming
– Peter Pacheco, University of San Francisco
– Morgan Kaufmann Publishers is an imprint of Elsevier

● Top 20 C++ threads mistakes

http://thispointer.com/c-11-multithreading-part-1-three-different-ways-to-create-threads/
http://en.cppreference.com/w/cpp/thread
http://www.acodersjourney.com/2017/08/top-20-cplusplus-multithreading-mistakes/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26

