
Sorting Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

1

Topic Overview

• Issues in Sorting on Parallel Computers

• Sorting Networks

• Bubble Sort and its Variants

• Quicksort

• Bucket and Sample Sort

• Other Sorting Algorithms

2

Sorting: Overview

• One of the most commonly used and well-studied kernels.

• Sorting can be comparison-based or noncomparison-

based.

• The fundamental operation of comparison-based sorting is

compare-exchange.

• The lower bound on any comparison-based sort of n

numbers is Θ(nlog n).

• We focus here on comparison-based sorting algorithms.

3

Sorting: Basics

What is a parallel sorted sequence? Where are the input and

output lists stored?

• We assume that the input and output lists are distributed.

• The sorted list is partitioned with the property that each

partitioned list is sorted and each element in processor Pi's

list is less than that in Pj's list if i < j.

4

Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation. Processes Pi and Pj

send their elements to each other. Process Pi keeps

min{ai,aj}, and Pj keeps max{ai, aj}.

5

Sorting: Basics

What is the parallel counterpart to a sequential comparator?

• If each processor has one element, the compare
exchange operation stores the smaller element at the
processor with smaller id. This can be done in ts + tw

time.

• If we have more than one element per processor, we
call this operation a compare split. Assume each of two
processors have n/p elements.

• After the compare-split operation, the smaller n/p elements
are at processor Pi and the larger n/p elements at Pj, where
i < j.

• The time for a compare-split operation is (ts+ twn/p),
assuming that the two partial lists were initially sorted. 6

Sorting: Parallel Compare Split Operation

A compare-split operation. Each process sends its block of size

n/p to the other process. Each process merges the received

block with its own block and retains only the appropriate half

of the merged block. In this example, process Pi retains the

smaller elements and process Pi retains the larger elements.
7

Sorting Networks

• Networks of comparators designed specifically for sorting.

• A comparator is a device with two inputs x and y and two

outputs x' and y'. For an increasing comparator, x' = min{x,y}

and y' = max{x,y}; and vice-versa.

• We denote an increasing comparator by and a

decreasing comparator by Ө.

• The speed of the network is proportional to its depth.

8

Sorting Networks: Comparators

A schematic representation of comparators: (a) an increasing

comparator, and (b) a decreasing comparator.

9

x

y

x’=min{x,y}

y’=max{x,y}

x

y

x’=max{x,y}

y’=min{x,y}

x

y

x’=min{x,y}

y’=max{x,y}

x

y

x’=max{x,y}

y’=min{x,y}

Sorting Networks

A typical sorting network. Every sorting network is made up of

a series of columns, and each column contains a number

of comparators connected in parallel.

10

Sorting Networks: Bitonic Sort

• A bitonic sorting network sorts n elements in Θ(log2n)

time.

• A bitonic sequence has two tones - increasing and

decreasing, or vice versa. Any cyclic rotation of such

sequence is also considered bitonic.

• 1,2,4,7,6,0 is a bitonic sequence, because it first increases

and then decreases. 8,9,2,1,0,4 is another bitonic

sequence, because it is a cyclic shift of 0,4,8,9,2,1.

• The kernel of the network is the rearrangement of a

bitonic sequence into a sorted sequence.

11

Sorting Networks: Bitonic Sort

• Let s = a0,a1,…,an-1 be a bitonic sequence such that a0 ≤

a1 ≤ ··· ≤ an/2-1 and an/2 ≥ an/2+1 ≥ ··· ≥ an-1.

• Consider the following subsequences of s:

s1 = min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}

s2 = max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}

(1)

• Note that s1 and s2 are both bitonic and each element of

s1 is less than every element in s2.

• We can apply the procedure recursively on s1 and s2 to

get the sorted sequence.

12

Sorting Networks: Bitonic Sort

Merging a 16-element bitonic sequence through a series of log 16

bitonic splits.

13

Sorting Networks: Bitonic Sort

• We can easily build a sorting network to implement this

bitonic merge algorithm.

• Such a network is called a bitonic merging network.

• The network contains log n columns. Each column

contains n/2 comparators and performs one step of the

bitonic merge.

• We denote a bitonic merging network with n inputs by

BM[n].

• Replacing the comparators by Ө comparators results

in a decreasing output sequence; such a network is

denoted by ӨBM[n].

14

Sorting Networks: Bitonic Sort

A bitonic merging network for n = 16. The input wires are numbered 0,1,…,

n - 1, and the binary representation of these numbers is shown. Each

column of comparators is drawn separately; the entire figure represents

a BM[16] bitonic merging network. The network takes a bitonic

sequence and outputs it in sorted order.
15

Sorting Networks: Bitonic Sort

How do we sort an unsorted sequence using a bitonic

merge?

• We must first build a single bitonic sequence from the

given sequence.

• A sequence of length 2 is a bitonic sequence.

• A bitonic sequence of length 4 can be built by sorting the

first two elements using BM[2] and next two using ӨBM[2].

• This process can be repeated to generate larger bitonic

sequences.

16

Sorting Networks: Bitonic Sort

The comparator network that transforms an input

sequence of 16 unordered numbers into a bitonic

sequence. 17

Sorting Networks: Bitonic Sort

A schematic representation of a network that converts an input

sequence into a bitonic sequence. In this example, BM[k]

and ӨBM[k] denote bitonic merging networks of input size k

that use and Ө comparators, respectively. The last

merging network (BM[16]) sorts the input. In this example,

n = 16. 18

Sorting Networks: Bitonic Sort

• The depth of the network is d(n) = d(n/2) + log n, i.e.

d(n) = Θ(log2 n).

• Each stage of the network contains n/2 comparators. A

serial implementation of the network would have

complexity Θ(n log2 n).

19

Mapping Bitonic Sort to Hypercubes

• Consider the case of one item per processor. The question

becomes one of how the wires in the bitonic network

should be mapped to the hypercube interconnect.

• Note from our earlier examples that the compare-exchange

operation is performed between two wires only if their

labels differ in exactly one bit!

• This implies a direct mapping of wires to processors. All

communication is nearest neighbor!

20

Mapping Bitonic Sort to Hypercubes

Communication during the last stage of bitonic sort.

Each wire is mapped to a hypercube process; each

connection represents a compare-exchange between

processes. 21

Mapping Bitonic Sort to Hypercubes

Communication characteristics of bitonic sort on a hypercube.

During each stage of the algorithm, processes

communicate along the dimensions shown.
22

Mapping Bitonic Sort to Hypercubes

Parallel formulation of bitonic sort on a hypercube with n = 2d processes.

23

Mapping Bitonic Sort to Hypercubes

• During each step of the algorithm, every process

performs a compare-exchange operation (single

nearest neighbor communication of one word).

• Since each step takes Θ(1) time, the parallel time is

Tp = Θ(log2n) (2)

• This algorithm is cost optimal w.r.t. its serial

counterpart, but not w.r.t. the best sorting algorithm.

24

Mapping Bitonic Sort to Meshes

• The connectivity of a mesh is lower than that of a

hypercube, so we must expect some overhead in this

mapping.

• Consider the row-major shuffled mapping of wires to

processors.

25

Mapping Bitonic Sort to Meshes

Different ways of mapping the input wires of the bitonic

sorting network to a mesh of processes: (a) row-major

mapping, (b) row-major snakelike mapping, and (c)

row-major shuffled mapping.

26

Mapping Bitonic Sort to Meshes

The last stage of the bitonic sort algorithm for n = 16 on a

mesh, using the row-major shuffled mapping. During

each step, process pairs compare-exchange their

elements. Arrows indicate the pairs of processes that

perform compare-exchange operations.

27

Block of Elements Per Processor

• Each process is assigned a block of n/p elements.

• The first step is a local sort of the local block.

• Each subsequent compare-exchange operation is

replaced by a compare-split operation.

• We can effectively view the bitonic network as having

(1 + log p)(log p)/2 steps.

29

Block of Elements Per Processor: Hypercube

• Initially the processes sort their n/p elements (using

merge sort) in time Θ((n/p)log(n/p)) and then perform

Θ(log2p) compare-split steps.

• The parallel run time of this formulation is

• Comparing to an optimal sort, the algorithm can

efficiently use up to processes.

• The isoefficiency function due to both communication

and extra work is Θ(plog plog2p) .

)2(
logn

p

30

Bubble Sort and its Variants

The sequential bubble sort algorithm compares and

exchanges adjacent elements in the sequence to be sorted:

Sequential bubble sort algorithm.

33

Bubble Sort and its Variants

• The complexity of bubble sort is Θ(n2).

• Bubble sort is difficult to parallelize since the algorithm

has no concurrency.

• A simple variant, though, uncovers the concurrency.

34

Odd-Even Transposition

Sequential odd-even transposition sort algorithm.

35

Odd-Even Transposition

Sorting n = 8 elements, using the odd-even transposition sort
algorithm. During each phase, n = 8 elements are compared.

36

Odd-Even Transposition

• After n phases of odd-even exchanges, the sequence

is sorted.

• Each phase of the algorithm (either odd or even)

requires Θ(n) comparisons.

• Serial complexity is Θ(n2).

37

Parallel Odd-Even Transposition

• Consider the one item per processor case.

• There are n iterations, in each iteration, each processor

does one compare-exchange.

• The parallel run time of this formulation is Θ(n).

• This is cost optimal with respect to the base serial

algorithm but not the optimal one.

38

Parallel Odd-Even Transposition

Parallel formulation of odd-even transposition.
39

Parallel Odd-Even Transposition

• Consider a block of n/p elements per processor.

• The first step is a local sort.

• In each subsequent step, the compare exchange

operation is replaced by the compare split operation.

• The parallel run time of the formulation is

40

Parallel Odd-Even Transposition

• The parallel formulation is cost-optimal for p = O(log n).

• The isoefficiency function of this parallel formulation

is Θ(p2p).

41

Shellsort

• Let n be the number of elements to be sorted and p be

the number of processes.

• During the first phase, processes that are far away

from each other in the array compare-split their

elements.

• During the second phase, the algorithm switches to an

odd-even transposition sort.

• Odd-even transposition is performed as long as the

blocks of data are changing.

42

Parallel Shellsort

• Initially, each process sorts its block of n/p elements

internally.

• Each process is now paired with its corresponding

process in the reverse order of the array. That is,

process Pi, where i < p/2, is paired with process Pp-i-1.

• A compare-split operation is performed.

• The processes are split into two groups of size p/2

each and the process repeated in each group.

43

Parallel Shellsort

An example of the first phase of parallel shellsort on an

eight-process array.
44

Parallel Shellsort

• Each process performs d = log p compare-split

operations.

• With O(p) bisection width, each communication can be

performed in time Θ(n/p) for a total time of Θ((nlog p)/p).

• In the second phase, l odd and even phases are

performed, each requiring time Θ(n/p).

• The parallel run time of the algorithm is:

45

Quicksort

• Quicksort is one of the most common sorting

algorithms for sequential computers because of its

simplicity, low overhead, and optimal average

complexity.

• Quicksort selects one of the entries in the sequence to

be the pivot and divides the sequence into two - one

with all elements less than the pivot and other greater.

• The process is recursively applied to each of the

sublists.

46

Quicksort

The sequential quicksort algorithm.
47

Quicksort

Example of the quicksort algorithm sorting a sequence of

size n = 8.

48

Quicksort

• The performance of quicksort depends critically on the

quality of the pivot.

• In the best case, the pivot divides the list in such a way

that the larger of the two lists does not have more

than αn elements (for some constant α).

• In this case, the complexity of quicksort is O(nlog n).

49

Parallelizing Quicksort

• Lets start with recursive decomposition - the list is

partitioned serially and each of the subproblems is

handled by a different processor.

• The time for this algorithm is lower-bounded by Ω(n)!

• Can we parallelize the partitioning step - in particular,

if we can use n processors to partition a list of length n

around a pivot in O(1) time, we have a winner.

• This is difficult to do on real machines, though.

50

Parallelizing Quicksort: PRAM Formulation

• We assume a CRCW (concurrent read, concurrent write) PRAM with

concurrent writes resulting in an arbitrary write succeeding.

• The formulation works by creating pools of processors. Every

processor is assigned to the same pool initially and has one

element.

• Each processor attempts to write its element to a common

location (for the pool).

• Each processor tries to read back the location. If the value read

back is greater than the processor's value, it assigns itself to the

`left' pool, else, it assigns itself to the `right' pool.

• Each pool performs this operation recursively.

• Note that the algorithm generates a tree of pivots. The depth of the

tree is the expected parallel runtime. The average value is O(log n).

51

Parallelizing Quicksort: PRAM Formulation

A binary tree generated by the execution of the quicksort

algorithm. Each level of the tree represents a different

array-partitioning iteration. If pivot selection is optimal,

then the height of the tree is Θ(log n), which is also the

number of iterations.
52

Parallelizing Quicksort: PRAM Formulation

The execution of the PRAM algorithm on the array shown in (a).
53

Parallelizing Quicksort: Shared Address Space

Formulation

• Consider a list of size n equally divided across p
processors.

• A pivot is selected by one of the processors and
made known to all processors.

• Each processor partitions its list into two, say Li and
Ui, based on the selected pivot.

• All of the Li lists are merged and all of the Ui lists are
merged separately.

• The set of processors is partitioned into two (in
proportion of the size of lists L and U). The process is
recursively applied to each of the lists.

54

Shared Address Space Formulation

55

Parallelizing Quicksort: Shared Address Space

Formulation

• The only thing we have not described is the global

reorganization (merging) of local lists to form L and U.

• The problem is one of determining the right location

for each element in the merged list.

• Each processor computes the number of elements

locally less than and greater than pivot.

• It computes two sum-scans to determine the starting

location for its elements in the merged L and U lists.

• Once it knows the starting locations, it can write its

elements safely.

56

Parallelizing Quicksort: Shared Address Space

Formulation

Efficient global rearrangement of the array.

57

Parallelizing Quicksort: Shared Address Space

Formulation

• The parallel time depends on the split and merge time, and the

quality of the pivot.

• The latter is an issue independent of parallelism, so we focus on the

first aspect, assuming ideal pivot selection.

• The algorithm executes in four steps: (i) determine and broadcast

the pivot; (ii) locally rearrange the array assigned to each process;

(iii) determine the locations in the globally rearranged array that

the local elements will go to; and (iv) perform the global

rearrangement.

• The first step takes time Θ(log p), the second, Θ(n/p) , the third, Θ(log

p) , and the fourth, Θ(n/p).

• The overall complexity of splitting an n-element array is Θ(n/p) +

Θ(log p).

58

Parallelizing Quicksort: Shared Address Space

Formulation

• The process recurses until there are p lists, at which

point, the lists are sorted locally.

• Therefore, the total parallel time is:

• The corresponding isoefficiency is Θ(plog2p) due to

broadcast and scan operations.

59

Parallelizing Quicksort: Message Passing Formulation

• A simple message passing formulation is based on the recursive

halving of the machine.

• Assume that each processor in the lower half of a p processor

ensemble is paired with a corresponding processor in the upper

half.

• A designated processor selects and broadcasts the pivot.

• Each processor splits its local list into two lists, one less (Li),

and other greater (Ui) than the pivot.

• A processor in the low half of the machine sends its list Ui to

the paired processor in the other half. The paired processor

sends its list Li.

• It is easy to see that after this step, all elements less than the

pivot are in the low half of the machine and all elements

greater than the pivot are in the high half.
60

Parallelizing Quicksort: Message Passing Formulation

• The above process is recursed until each processor has

its own local list, which is sorted locally.

• The time for a single reorganization is Θ(log p) for

broadcasting the pivot element, Θ(n/p) for splitting the

locally assigned portion of the array, Θ(n/p) for exchange

and local reorganization.

• We note that this time is identical to that of the

corresponding shared address space formulation.

• It is important to remember that the reorganization of

elements is a bandwidth sensitive operation.

61

Bucket and Sample Sort

• In Bucket sort, the range [a,b] of input numbers is

divided into m equal sized intervals, called buckets.

• Each element is placed in its appropriate bucket.

• If the numbers are uniformly divided in the range, the

buckets can be expected to have roughly identical

number of elements.

• Elements in the buckets are locally sorted.

• The run time of this algorithm is Θ(nlog(n/m)).

62

Parallel Bucket Sort

• Parallelizing bucket sort is relatively simple. We can

select m = p.

• In this case, each processor has a range of values it is

responsible for.

• Each processor runs through its local list and assigns

each of its elements to the appropriate processor.

• The elements are sent to the destination processors

using a single all-to-all personalized communication.

• Each processor sorts all the elements it receives.

63

Parallel Bucket and Sample Sort

• The critical aspect of the above algorithm is one of
assigning ranges to processors. This is done by
suitable splitter selection.

• The splitter selection method divides the n elements into
m blocks of size n/m each, and sorts each block by using
quicksort.

• From each sorted block it chooses m – 1 evenly spaced
elements.

• The m(m – 1) elements selected from all the blocks
represent the sample used to determine the buckets.

• This scheme guarantees that the number of elements
ending up in each bucket is less than 2n/m.

64

Parallel Bucket and Sample Sort

An example of the execution of sample sort on an array

with 24 elements on three processes.

65

Parallel Bucket and Sample Sort

• The splitter selection scheme can itself be

parallelized.

• Each processor generates the p – 1 local splitters in

parallel.

• All processors share their splitters using a single all-to-

all broadcast operation.

• Each processor sorts the p(p – 1) elements it receives

and selects p – 1 uniformly spaces splitters from

them.

66

Parallel Bucket and Sample Sort: Analysis

• The internal sort of n/p elements requires time

Θ((n/p)log(n/p)), and the selection of p – 1 sample elements

requires time Θ(p).

• The time for an all-to-all broadcast is Θ(p2), the time to

internally sort the p(p – 1) sample elements is Θ(p2log p), and

selecting p – 1 evenly spaced splitters takes time Θ(p).

• Each process can insert these p – 1splitters in its local sorted

block of size n/p by performing p – 1 binary searches in time

Θ(plog(n/p)).

• The time for reorganization of the elements is O(n/p).

67

Parallel Bucket and Sample Sort: Analysis

• The total time is given by:

• The isoefficiency of the formulation is Θ(p3log p).

68

