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Topic Overview 

• Issues in Sorting on Parallel Computers 

• Sorting Networks 

• Bubble Sort and its Variants 

• Quicksort 

• Bucket and Sample Sort 

• Other Sorting Algorithms 
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Sorting: Overview 

• One of the most commonly used and well-studied kernels. 

• Sorting can be comparison-based or noncomparison-

based. 

• The fundamental operation of comparison-based sorting is 

compare-exchange. 

• The lower bound on any comparison-based sort of n

numbers is Θ(nlog n). 

• We focus here on comparison-based sorting algorithms. 
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Sorting: Basics 

What is a parallel sorted sequence? Where are the input and 

output lists stored? 

• We assume that the input and output lists are distributed. 

• The sorted list is partitioned with the property that each 

partitioned list is sorted and each element in processor Pi's 

list is less than that in Pj's list if i < j. 
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Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation. Processes Pi and Pj

send their elements to each other. Process Pi keeps 

min{ai,aj}, and  Pj keeps max{ai, aj}. 
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Sorting: Basics 

What is the parallel counterpart to a sequential comparator? 

• If each processor has one element, the compare 
exchange operation stores the smaller element at the 
processor with smaller id. This can be done in ts + tw

time. 

• If we have more than one element per processor, we 
call this operation a compare split. Assume each of two 
processors have n/p elements. 

• After the compare-split operation, the smaller n/p elements 
are at processor Pi and the larger n/p elements at Pj, where 
i < j. 

• The time for a compare-split operation is (ts+ twn/p), 
assuming that the two partial lists were initially sorted. 6



Sorting: Parallel Compare Split Operation 

A compare-split operation. Each process sends its block of size   

n/p to the other process. Each process merges the received 

block with its own block and retains only the appropriate half 

of the merged block. In this example, process Pi retains the 

smaller elements and process Pi retains the larger elements. 
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Sorting Networks 

• Networks of comparators designed specifically for sorting. 

• A comparator is a device with two inputs x and y and two 

outputs x' and y'. For an increasing comparator,  x' = min{x,y}

and y' = max{x,y}; and vice-versa. 

• We denote an increasing comparator by  and a 

decreasing comparator by Ө.

• The speed of the network is proportional to its depth. 
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Sorting Networks: Comparators 

A schematic representation of comparators: (a) an increasing 

comparator, and (b) a decreasing comparator.
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Sorting Networks 

A typical sorting network. Every sorting network is made up of 

a series of columns, and each column contains a number 

of comparators connected in parallel. 

10



Sorting Networks: Bitonic Sort 

• A bitonic sorting network sorts n elements in Θ(log2n)

time. 

• A bitonic sequence has two tones - increasing and 

decreasing, or vice versa. Any cyclic rotation of such 

sequence is also considered bitonic.

• 1,2,4,7,6,0 is a bitonic sequence, because it first increases 

and then decreases. 8,9,2,1,0,4 is another bitonic 

sequence, because it is a cyclic shift of 0,4,8,9,2,1. 

• The kernel of the network is the rearrangement of a 

bitonic sequence into a sorted sequence. 
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Sorting Networks: Bitonic Sort 

• Let s = a0,a1,…,an-1 be a bitonic sequence such that    a0 ≤ 

a1 ≤ ··· ≤ an/2-1 and an/2 ≥ an/2+1 ≥ ··· ≥ an-1. 

• Consider the following subsequences of s: 

s1 = min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}

s2 = max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}

(1)

• Note that s1 and s2 are both bitonic and each element of 

s1 is less than every element in s2. 

• We can apply the procedure recursively on s1 and s2 to 

get the sorted sequence.
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Sorting Networks: Bitonic Sort 

Merging a   16-element bitonic sequence through a series of log 16

bitonic splits. 
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Sorting Networks: Bitonic Sort 

• We can easily build a sorting network to implement this 

bitonic merge algorithm. 

• Such a network is called a bitonic merging network. 

• The network contains log n columns. Each column 

contains n/2 comparators and performs one step of the 

bitonic merge. 

• We denote a bitonic merging network with n inputs by   

BM[n]. 

• Replacing the  comparators by Ө comparators results 

in a decreasing output sequence; such a network is 

denoted by ӨBM[n]. 
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Sorting Networks: Bitonic Sort

A bitonic merging network for n = 16. The input wires are numbered 0,1,…, 

n - 1, and the binary representation of these numbers is shown. Each 

column of comparators is drawn separately; the entire figure represents 

a BM[16] bitonic merging network. The network takes a bitonic 

sequence and outputs it in sorted order. 
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Sorting Networks: Bitonic Sort 

How do we sort an unsorted sequence using a bitonic 

merge?

• We must first build a single bitonic sequence from the 

given sequence. 

• A sequence of length 2 is a bitonic sequence. 

• A bitonic sequence of length 4 can be built by sorting the 

first two elements using BM[2] and next two using ӨBM[2]. 

• This process can be repeated to generate larger bitonic 

sequences. 
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Sorting Networks: Bitonic Sort 

The comparator network that transforms an input 

sequence of 16 unordered numbers into a bitonic 

sequence. 17



Sorting Networks: Bitonic Sort 

A schematic representation of a network that converts an input 

sequence into a bitonic sequence. In this example, BM[k]

and ӨBM[k] denote bitonic merging networks of input size k

that use  and Ө comparators, respectively. The last 

merging network (BM[16]) sorts the input. In this example, 

n = 16. 18



Sorting Networks: Bitonic Sort 

• The depth of the network is d(n) = d(n/2) + log n, i.e.  

d(n) = Θ(log2 n). 

• Each stage of the network contains n/2 comparators. A 

serial implementation of the network would have 

complexity Θ(n log2 n).
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Mapping Bitonic Sort to Hypercubes 

• Consider the case of one item per processor. The question 

becomes one of how the wires in the bitonic network 

should be mapped to the hypercube interconnect. 

• Note from our earlier examples that the compare-exchange 

operation is performed between two wires only if their 

labels differ in exactly one bit! 

• This implies a direct mapping of wires to processors. All 

communication is nearest neighbor! 
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Mapping Bitonic Sort to Hypercubes 

Communication during the last stage of bitonic sort. 

Each wire is mapped to a hypercube process; each 

connection represents a compare-exchange between 

processes. 21



Mapping Bitonic Sort to Hypercubes 

Communication characteristics of bitonic sort on a hypercube. 

During each stage of the algorithm, processes 

communicate along the dimensions shown.
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Mapping Bitonic Sort to Hypercubes 

Parallel formulation of bitonic sort on a hypercube with n = 2d processes. 
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Mapping Bitonic Sort to Hypercubes 

• During each step of the algorithm, every process 

performs a compare-exchange operation (single 

nearest neighbor communication of one word). 

• Since each step takes Θ(1) time, the parallel time is 

Tp = Θ(log2n) (2)

• This algorithm is cost optimal w.r.t. its serial 

counterpart, but not w.r.t. the best sorting algorithm. 
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Mapping Bitonic Sort to Meshes 

• The connectivity of a mesh is lower than that of a 

hypercube, so we must expect some overhead in this 

mapping. 

• Consider the row-major shuffled mapping of wires to 

processors. 
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Mapping Bitonic Sort to Meshes 

Different ways of mapping the input wires of the bitonic 

sorting network to a mesh of processes: (a) row-major

mapping, (b) row-major snakelike mapping, and (c) 

row-major shuffled mapping. 
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Mapping Bitonic Sort to Meshes 

The last stage of the bitonic sort algorithm for n = 16 on a 

mesh, using the row-major shuffled mapping. During 

each step, process pairs compare-exchange their 

elements. Arrows indicate the pairs of processes that 

perform compare-exchange operations. 
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Block of  Elements Per Processor 

• Each process is assigned a block of n/p elements. 

• The first step is a local sort of the local block. 

• Each subsequent compare-exchange operation is 

replaced by a compare-split operation. 

• We can effectively view the bitonic network as having    

(1 + log p)(log p)/2 steps. 
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Block of  Elements Per Processor: Hypercube 

• Initially the processes sort their n/p elements (using 

merge sort) in time  Θ((n/p)log(n/p)) and then perform   

Θ(log2p) compare-split steps. 

• The parallel run time of this formulation is 

• Comparing to an optimal sort, the algorithm can 

efficiently use up to   processes. 

• The isoefficiency function due to both communication 

and extra work is Θ(plog plog2p) . 

)2(
logn

p 
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Bubble Sort and its Variants 

The sequential bubble sort algorithm compares and 

exchanges adjacent elements in the sequence to be sorted: 

Sequential bubble sort algorithm.
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Bubble Sort and its Variants 

• The complexity of bubble sort is Θ(n2). 

• Bubble sort is difficult to parallelize since the algorithm 

has no concurrency. 

• A simple variant, though, uncovers the concurrency. 
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Odd-Even Transposition 

Sequential odd-even transposition sort algorithm. 
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Odd-Even Transposition 

Sorting n = 8 elements, using the odd-even transposition sort 
algorithm. During each phase, n = 8 elements are compared. 

36



Odd-Even Transposition 

• After n phases of odd-even exchanges, the sequence 

is sorted. 

• Each phase of the algorithm (either odd or even) 

requires Θ(n) comparisons. 

• Serial complexity is Θ(n2). 
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Parallel Odd-Even Transposition 

• Consider the one item per processor case. 

• There are n iterations, in each iteration, each processor 

does one compare-exchange. 

• The parallel run time of this formulation is Θ(n). 

• This is cost optimal with respect to the base serial 

algorithm but not the optimal one. 
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Parallel Odd-Even Transposition 

Parallel formulation of odd-even transposition. 
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Parallel Odd-Even Transposition 

• Consider a block of n/p elements per processor. 

• The first step is a local sort. 

• In each subsequent step, the compare exchange 

operation is replaced by the compare split operation. 

• The parallel run time of the formulation is
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Parallel Odd-Even Transposition 

• The parallel formulation is cost-optimal for p = O(log n). 

• The isoefficiency function of this parallel formulation      

is Θ(p2p). 
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Shellsort

• Let n be the number of elements to be sorted and p be 

the number of processes. 

• During the first phase, processes that are far away 

from each other in the array compare-split their 

elements. 

• During the second phase, the algorithm switches to an 

odd-even transposition sort.

• Odd-even transposition is performed as long as the 

blocks of data are changing.
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Parallel Shellsort 

• Initially, each process sorts its block of n/p elements 

internally. 

• Each process is now paired with its corresponding 

process in the reverse order of the array. That is, 

process Pi, where i < p/2, is paired with process Pp-i-1. 

• A compare-split operation is performed. 

• The processes are split into two groups of size p/2

each and the process repeated in each group.
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Parallel Shellsort 

An example of the first phase of parallel shellsort on an 

eight-process array. 
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Parallel Shellsort 

• Each process performs d = log p compare-split 

operations. 

• With O(p) bisection width, each communication can be 

performed in time Θ(n/p) for a total time of Θ((nlog p)/p). 

• In the second phase, l odd and even phases are 

performed, each requiring time Θ(n/p). 

• The parallel run time of the algorithm is: 
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Quicksort

• Quicksort is one of the most common sorting 

algorithms for sequential computers because of its 

simplicity, low overhead, and optimal average 

complexity. 

• Quicksort selects one of the entries in the sequence to 

be the pivot and divides the sequence into two - one 

with all elements less than the pivot and other greater. 

• The process is recursively applied to each of the 

sublists. 
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Quicksort 

The sequential quicksort algorithm. 
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Quicksort 

Example of the quicksort algorithm sorting a sequence of 

size  n = 8. 
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Quicksort 

• The performance of quicksort depends critically on the 

quality of the pivot. 

• In the best case, the pivot divides the list in such a way 

that the larger of the two lists does not have more 

than   αn elements (for some constant α). 

• In this case, the complexity of quicksort is O(nlog n). 
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Parallelizing Quicksort 

• Lets start with recursive decomposition - the list is 

partitioned serially and each of the subproblems is 

handled by a different processor. 

• The time for this algorithm is lower-bounded by Ω(n)! 

• Can we parallelize the partitioning step - in particular, 

if we can use n processors to partition a list of length n

around a pivot in O(1) time, we have a winner. 

• This is difficult to do on real machines, though. 
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Parallelizing Quicksort: PRAM Formulation 

• We assume a CRCW (concurrent read, concurrent write) PRAM with 

concurrent writes resulting in an arbitrary write succeeding. 

• The formulation works by creating pools of processors. Every 

processor is assigned to the same pool initially and has one 

element. 

• Each processor attempts to write its element to a common 

location (for the pool). 

• Each processor tries to read back the location. If the value read 

back is greater than the processor's value, it assigns itself to the 

`left' pool, else, it assigns itself to the `right' pool. 

• Each pool performs this operation recursively. 

• Note that the algorithm generates a tree of pivots. The depth of the 

tree is the expected parallel runtime. The average value is O(log n). 
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Parallelizing Quicksort: PRAM Formulation 

A binary tree generated by the execution of the quicksort 

algorithm. Each level of the tree represents a different 

array-partitioning iteration. If pivot selection is optimal, 

then the height of the tree is Θ(log n), which is also the 

number of iterations. 
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Parallelizing Quicksort: PRAM Formulation 

The execution of the PRAM algorithm on the array shown in (a). 
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Parallelizing Quicksort: Shared Address Space 

Formulation 

• Consider a list of size n equally divided across p
processors. 

• A pivot is selected by one of the processors and 
made known to all processors. 

• Each processor partitions its list into two, say Li and 
Ui, based on the selected pivot. 

• All of the Li lists are merged and all of the Ui lists are 
merged separately. 

• The set of processors is partitioned into two (in 
proportion of the size of lists L and U). The process is 
recursively applied to each of the lists. 
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Shared Address Space Formulation 
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Parallelizing Quicksort: Shared Address Space 

Formulation 

• The only thing we have not described is the global 

reorganization (merging) of local lists to form L and U. 

• The problem is one of determining the right location 

for each element in the merged list. 

• Each processor computes the number of elements 

locally less than and greater than pivot. 

• It computes two sum-scans to determine the starting 

location for its elements in the merged L and U lists. 

• Once it knows the starting locations, it can write its 

elements safely. 
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Parallelizing Quicksort: Shared Address Space 

Formulation 

Efficient global rearrangement of the array. 

57



Parallelizing Quicksort: Shared Address Space 

Formulation 

• The parallel time depends on the split and merge time, and the 

quality of the pivot. 

• The latter is an issue independent of parallelism, so we focus on the 

first aspect, assuming ideal pivot selection. 

• The algorithm executes in four steps: (i) determine and broadcast 

the pivot; (ii) locally rearrange the array assigned to each process; 

(iii) determine the locations in the globally rearranged array that 

the local elements will go to; and (iv) perform the global 

rearrangement. 

• The first step takes time Θ(log p), the second, Θ(n/p) , the third, Θ(log 

p) , and the fourth, Θ(n/p). 

• The overall complexity of splitting an n-element array is Θ(n/p) + 

Θ(log p).
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Parallelizing Quicksort: Shared Address Space 

Formulation 

• The process recurses until there are p lists, at which 

point, the lists are sorted locally. 

• Therefore, the total parallel time is: 

• The corresponding isoefficiency is Θ(plog2p) due to 

broadcast and scan operations. 
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Parallelizing Quicksort: Message Passing Formulation

• A simple message passing formulation is based on the recursive 

halving of the machine. 

• Assume that each processor in the lower half of a p processor 

ensemble is paired with a corresponding processor in the upper 

half. 

• A designated processor selects and broadcasts the pivot. 

• Each processor splits its local list into two lists, one less (Li), 

and other greater (Ui) than the pivot. 

• A processor in the low half of the machine sends its list Ui to 

the paired processor in the other half. The paired processor 

sends its  list Li. 

• It is easy to see that after this step, all elements less than the 

pivot are in the low half of the machine and all elements 

greater than the pivot are in the high half. 
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Parallelizing Quicksort: Message Passing Formulation

• The above process is recursed until each processor has 

its own local list, which is sorted locally. 

• The time for a single reorganization is Θ(log p) for 

broadcasting the pivot element, Θ(n/p) for splitting the 

locally assigned portion of the array, Θ(n/p) for exchange 

and local reorganization. 

• We note that this time is identical to that of the 

corresponding shared address space formulation. 

• It is important to remember that the reorganization of 

elements is a bandwidth sensitive operation. 
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Bucket and Sample Sort 

• In Bucket sort, the range [a,b] of input numbers is 

divided into m equal sized intervals, called buckets. 

• Each element is placed in its appropriate bucket. 

• If the numbers are uniformly divided in the range, the 

buckets can be expected to have roughly identical 

number of elements. 

• Elements in the buckets are locally sorted. 

• The run time of this algorithm is Θ(nlog(n/m)). 
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Parallel Bucket Sort 

• Parallelizing bucket sort is relatively simple. We can 

select m = p. 

• In this case, each processor has a range of values it is 

responsible for. 

• Each processor runs through its local list and assigns 

each of its elements to the appropriate processor. 

• The elements are sent to the destination processors 

using a single all-to-all personalized communication. 

• Each processor sorts all the elements it receives. 
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Parallel Bucket and Sample Sort 

• The critical aspect of the above algorithm is one of 
assigning ranges to processors. This is done by 
suitable splitter selection. 

• The splitter selection method divides the n elements into  
m blocks of size n/m each, and sorts each block by using 
quicksort. 

• From each sorted block it chooses m – 1 evenly spaced 
elements. 

• The m(m – 1) elements selected from all the blocks 
represent the sample used to determine the buckets. 

• This scheme guarantees that the number of elements 
ending up in each bucket is less than 2n/m. 
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Parallel Bucket and Sample Sort 

An example of the execution of sample sort on an array 

with 24 elements on three processes. 
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Parallel Bucket and Sample Sort 

• The splitter selection scheme can itself be 

parallelized. 

• Each processor generates the p – 1 local splitters in 

parallel. 

• All processors share their splitters using a single all-to-

all broadcast operation. 

• Each processor sorts the p(p – 1) elements it receives 

and selects p – 1 uniformly spaces splitters from 

them. 
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Parallel Bucket and Sample Sort: Analysis 

• The internal sort of n/p elements requires time 

Θ((n/p)log(n/p)), and the selection of p – 1 sample elements 

requires time Θ(p). 

• The time for an all-to-all broadcast is Θ(p2), the time to 

internally sort the p(p – 1) sample elements is Θ(p2log p), and 

selecting p – 1 evenly spaced splitters takes time Θ(p). 

• Each process can insert these p – 1splitters in its local sorted 

block of size n/p by performing p – 1 binary searches in time 

Θ(plog(n/p)). 

• The time for reorganization of the elements is O(n/p). 
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Parallel Bucket and Sample Sort: Analysis 

• The total time is given by: 

• The isoefficiency of the formulation is Θ(p3log p). 
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