
Dense Matrix Algorithms

Ananth Grama, Anshul Gupta,

George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,

Addison Wesley, 2003.

1

Topic Overview

• Matrix-Vector Multiplication

• Matrix-Matrix Multiplication

• Solving a System of Linear Equations

2

Matix Algorithms: Introduction

• Due to their regular structure, parallel computations

involving matrices and vectors readily lend themselves to

data-decomposition.

• Typical algorithms rely on input, output, or

intermediate data decomposition.

• Most algorithms use one- and two-dimensional block,

cyclic, and block-cyclic partitionings.

3

Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1

vector x to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and

additions.

4

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• The n x n matrix is partitioned among n processors,

with each processor storing complete row of the

matrix.

• The n x 1 vector x is distributed such that each

process owns one of its elements.

5

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using rowwise

block 1-D partitioning. For the one-row-per-process case, p = n. 6

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using rowwise

block 1-D partitioning. For the one-row-per-process case, p = n. 7

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• Since each process starts with only one element of x ,

an all-to-all broadcast is required to distribute all the

elements to all the processes.

• Process Pi now computes .

• The all-to-all broadcast and the computation of y[i] both

take time Θ(n) . Therefore, the parallel time is Θ(n) .

8

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• Consider now the case when p < n and we use block 1D
partitioning.

• Each process initially stores n/p complete rows of the
matrix and a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes
and involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure is

This is cost-optimal.

9

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

Scalability Analysis:

• We know that T0 = pTP - W, therefore, we have,

• For isoefficiency, we have W = KT0, where K = E/(1 – E)
for desired efficiency E.

• From this, we have W = O(p2) (from the tw term).

• There is also a bound on isoefficiency because of
concurrency. In this case, p < n, therefore, W = n2 =
Ω(p2).

• Overall isoefficiency is W = O(p2).

10

Matrix-Vector Multiplication:

2-D Partitioning

• The n x n matrix is partitioned among n2 processors

such that each processor owns a single element.

• The n x 1 vector x is distributed only in the last

column of n processors.

11

Matrix-Vector Multiplication:

2-D Partitioning

• We must first align the vector with the matrix

appropriately.

• The first communication step for the 2-D partitioning

aligns the vector x along the principal diagonal of the

matrix.

• The second step copies the vector elements from each

diagonal process to all the processes in the

corresponding column using n simultaneous

broadcasts among all processors in the column.

• Finally, the result vector is computed by performing an

all-to-one reduction along the columns.

12

Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the

one-element-per-process case, p = n2 if the matrix size is n x n .
13

Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the

one-element-per-process case, p = n2 if the matrix size is n x n .
14

Matrix-Vector Multiplication:

2-D Partitioning

• Three basic communication operations are used in

this algorithm: one-to-one communication to align the

vector along the main diagonal, one-to-all broadcast of

each vector element among the n processes of each

column, and all-to-one reduction in each row.

• Each of these operations takes Θ(log n) time and the

parallel time is Θ(log n) .

• The cost (process-time product) is Θ(n2 log n) ; hence,

the algorithm is not cost-optimal.

15

Matrix-Vector Multiplication:

2-D Partitioning

• When using fewer than n2 processors, each process

owns an block of the matrix.

• The vector is distributed in portions of elements in

the last process-column only.

• In this case, the message sizes for the alignment,

broadcast, and reduction are all .

• The computation is a product of an

submatrix with a vector of length .

16

Matrix-Vector Multiplication:

2-D Partitioning

• The first alignment step takes time

• The broadcast and reductions take time

• Local matrix-vector products take time

• Total time is

17

Matrix-Vector Multiplication:

2-D Partitioning

• Scalability Analysis:

•

• Equating T0 with W, term by term, for isoefficiency, we

have, as the dominant term.

• The isoefficiency due to concurrency is O(p).

• The overall isoefficiency is (due to the

network bandwidth).

• For cost optimality, we have, . For this,

we have,

18

1-D vs. 2-D Partitioning

19

1-D 2-D

Max num. of

processors

p  n p  n2

Tp

isoefficiency

Max num. of

processors

(cost-optimally)

O(p2)

p = O(n)

Matrix-Matrix Multiplication

• Consider the problem of multiplying two n x n dense,

square matrices A and B to yield the product matrix

C =A x B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms

(Strassen's method), although, these can be used as

serial kernels in the parallel algorithms.

• A useful concept in this case is called block operations.

In this view, an n x n matrix A can be regarded as a q x q

array of blocks Ai,j (0 ≤ i, j < q) such that each block is an

(n/q) x (n/q) submatrix.

• In this view, we perform q3 matrix multiplications,

each involving (n/q) x (n/q) matrices. 20

Matrix-Matrix Multiplication

• Consider two n x n matrices A and B partitioned into

p blocks Ai,j and Bi,j (0 ≤ i, j <) of size

each.

• Process Pi,j initially stores Ai,j and Bi,j and computes

block Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k

and Bk,j for 0 ≤ k < .

• All-to-all broadcast blocks of A along rows and B

along columns.

• Perform local submatrix multiplication.

21

Matrix-Matrix Multiplication

22

Ai,j Bi,j Ci,j

x =

Matrix-Matrix Multiplication

• The two broadcasts take time

• The computation requires multiplications of
sized submatrices.

• The parallel run time is approximately

• The algorithm is cost optimal and the isoefficiency is
O(p1.5) due to bandwidth term tw and concurrency.

• Major drawback of the algorithm is that it is not memory
optimal.

23

Matrix-Matrix Multiplication:

Cannon's Algorithm

• In this algorithm, we schedule the computations of the

processes of the ith row such that, at any given time,

each process is using a different block Ai,k.

• These blocks can be systematically rotated among

the processes after every submatrix multiplication so that

every process gets a fresh Ai,k after each rotation.

24

Matrix-Matrix Multiplication:

Cannon's Algorithm

Communication steps in Cannon's algorithm on 9 processes.

25

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

B2,0 B2,1 B2,2

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

B2,0 B2,1 B2,2

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

B0,0 B0,1 B0,2

B1,0 B1,1 B1,2

B2,0 B2,1 B2,2

C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

Matrix-Matrix Multiplication:

Cannon's Algorithm

• Align the blocks of A and B in such a way that each

process multiplies its local submatrices. This is done

by shifting all submatrices Ai,j to the left (with

wraparound) by i steps and all submatrices Bi,j up (with

wraparound) by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block

of B moves one step up (again with wraparound).

• Perform next block multiplication, add to partial

result, repeat until all blocks have been multiplied.

26

Matrix-Matrix Multiplication:

Cannon's Algorithm

• In the alignment step, since the maximum distance over
which a block shifts is , the two shift operations
require a total of time.

• Each of the single-step shifts in the compute-and-
shift phase of the algorithm takes time.

• The computation time for multiplying matrices of
size is .

• The parallel time is approximately:

• The cost-efficiency and isoefficiency of the algorithm
are identical to the first algorithm, except, this is
memory optimal.

27

Matrix-Matrix Multiplication:

DNS Algorithm

• Uses a 3-D partitioning.

• Visualize the matrix multiplication algorithm as a

cube. Matrices A and B come in two orthogonal faces

and result C comes out the other orthogonal face.

• Each internal node in the cube represents a single

add-multiply operation (and thus the complexity).

• DNS algorithm partitions this cube using a 3-D block

scheme.

28

Matrix-Matrix Multiplication:

DNS Algorithm

The communication steps in the DNS algorithm while

multiplying 4 x 4 matrices A and B on 64 processes. 29

Matrix-Matrix Multiplication:

DNS Algorithm

The communication steps in the DNS algorithm while

multiplying 4 x 4 matrices A and B on 64 processes. 30

Matrix-Matrix Multiplication:

DNS Algorithm

• Assume an n x n x n mesh of processors.

• Move the columns of A and rows of B and perform
broadcast.

• Each processor computes a single add-multiply.

• This is followed by an accumulation along the C
dimension.

• Since each add-multiply takes constant time and
accumulation and broadcast takes log n time, the total
runtime is log n.

• This is not cost optimal. It can be made cost optimal
by using n / log n processors along the direction of
accumulation.

31

Matrix-Matrix Multiplication:

DNS Algorithm

Using fewer than n3 processors.

• Assume that the number of processes p is equal to q3 for

some q < n.

• The two matrices are partitioned into blocks of size

(n/q) x(n/q).

• Each matrix can thus be regarded as a q x q two-

dimensional square array of blocks.

• The algorithm follows from the previous one, except, in

this case, we operate on blocks rather than on

individual elements.

32

Matrix-Matrix Multiplication:

DNS Algorithm

Using fewer than n3 processors.

• The first one-to-one communication step is performed for
both A and B, and takes time for each matrix.

• The two one-to-all broadcasts take
time for each matrix.

• The reduction takes time .

• Multiplication of submatrices takes
time.

• The parallel time is approximated by:

• The isoefficiency function is .
33

Cannon's vs. DNS Algorithm

34

Cannon’s DNS

Max num. of

processors

p  n2 p  n3

Tp

W

Max num. of

processors

(cost-optimally)

O(p1.5)

p = O(n2) p = O(n3/log3p)

Solving a System of Linear Equations

• Consider the problem of solving linear equations of the

kind:

• This is written as Ax = b, where A is an n x n matrix with

A[i, j] = ai,j, b is an n x 1 vector [b0, b1, … , bn-1]T, and x is

the solution.

35

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form,

and back-substitution. The triangular form is as:

We write this as: Ux = y .

A commonly used method for transforming a given matrix

into an upper-triangular matrix is Gaussian Elimination.

36

Gaussian Elimination

Serial Gaussian Elimination

37

Gaussian Elimination

• The computation has three nested loops - in the kth

iteration of the outer loop, the algorithm performs (n-k)2

computations. Summing from k = 1..n, we have roughly

(n3/3) multiplications-subtractions.

A typical computation in Gaussian elimination.
38

Parallel Gaussian Elimination

• Assume p = n with each row assigned to a processor.

• The first step of the algorithm normalizes the row. This
is a serial operation and takes time (n-k) in the kth

iteration.

• In the second step, the normalized row is broadcast to
all the processors. This takes time .

• Each processor can independently eliminate this row
from its own. This requires (n-k-1) multiplications and
subtractions.

• The total parallel time can be computed by summing
from k = 1 … n-1 as

• The formulation is not cost optimal because of the tw

term. 39

Parallel Gaussian Elimination

Gaussian elimination steps during the iteration corresponding k = 3 40

1)

2)

3)

Parallel Gaussian Elimination:

Pipelined Execution

• In the previous formulation, the (k+1)st iteration starts

only after all the computation and communication for the

kth iteration is complete.

• In the pipelined version, there are three steps -

normalization of a row, communication, and

elimination. These steps are performed in an

asynchronous fashion.

• A processor Pk waits to receive and eliminate all rows

prior to k.

• Once it has done this, it forwards its own row to

processor Pk+1.

41

Parallel Gaussian Elimination:

Pipelined Execution

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned

withone row per process. 42

Parallel Gaussian Elimination:

Pipelined Execution

• The total number of steps in the entire pipelined

procedure is Θ(n).

• In any step, either O(n) elements are communicated

between directly-connected processes, or a division

step is performed on O(n) elements of a row, or an

elimination step is performed on O(n) elements of a

row.

• The parallel time is therefore O(n2) .

• This is cost optimal.

43

Parallel Gaussian Elimination:

Block 1D with p < n

• The above algorithm can be easily adapted to the case
when p < n.

• In the kth iteration, a processor with all rows belonging to
the active part of the matrix performs (n – k -1) / np
multiplications and subtractions.

• In the pipelined version, for n > p, computation dominates
communication.

• The parallel time is given by:

or approximately, n3/p.

• While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run time by a factor
of 3/2.

45

Parallel Gaussian Elimination:

Block 1D with p < n

One- and two-dimensional block-cyclic distributions among four

processes

46

Parallel Gaussian Elimination:

Block 1D with p < n

• The load imbalance problem can be alleviated by using a

cyclic mapping.

• In this case, other than processing of the last p rows,

there is no load imbalance.

• This corresponds to a cumulative load imbalance

overhead of O(n2p) (instead of O(n3) in the previous

case).

47

