#### **Dense Matrix Algorithms**

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing", Addison Wesley, 2003.

#### **Topic Overview**

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

#### **Matix Algorithms: Introduction**

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

#### **Matrix-Vector Multiplication**

- We aim to multiply a dense n x n matrix A with an n x 1 vector x to yield the n x 1 result vector y.
- The **serial algorithm requires**  $n^2$  multiplications and additions.

$$W=n^2$$
.

- The n x n matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The  $n \times 1$  vector x is distributed such that each process owns one of its elements.



 (a) Initial partitioning of the matrix and the starting vector x (b) Distribution of the full vector among all the processes by all-to-all broadcast

Multiplication of an  $n \times n$  matrix with an  $n \times 1$  vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.



 (c) Entire vector distributed to each process after the broadcast



(d) Final distribution of the matrix and the result vector y

Multiplication of an  $n \times n$  matrix with an  $n \times 1$  vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process  $P_i$  now computes  $y[i] = \sum_{j=0}^{n-1} (A[i,j] \times x[j])$  .
- The all-to-all broadcast and the computation of y[i] both take time  $\Theta(n)$ . Therefore, the parallel time is  $\Theta(n)$ .

- Consider now the case when p < n and we use block 1D partitioning.</li>
- Each process initially stores n/p complete rows of the matrix and a portion of the vector of size n/p.
- The **all-to-all broadcast** takes place among p processes and involves messages of size n/p.
- This is followed by n/p local dot products.
- Thus, the parallel run time of this procedure is

$$T_P = rac{n^2}{p} + t_s \log p + t_w n.$$

This is **cost-optimal**.

#### Scalability Analysis:

- We know that  $T_0 = pT_P$  W, therefore, we have,  $T_o = t_s p \log p + t_w n p$ .
- For isoefficiency, we have  $W = KT_0$ , where K = E/(1 E) for desired efficiency E.
- From this, we have  $W = O(p^2)$  (from the  $t_w$  term).
- There is also a **bound on isoefficiency because of concurrency**. In this case, p < n, therefore,  $W = n^2 = \Omega(p^2)$ .
- Overall isoefficiency is  $W = O(p^2)$ .

- The  $n \times n$  matrix is partitioned among  $n^2$  processors such that each processor owns a single element.
- The n x 1 vector x is distributed only in the last column of n processors.

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.





- (a) Initial data distribution and communication steps to align the vector along the diagonal
- (b) One-to-all broadcast of portions of the vector along process columns

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case,  $p = n^2$  if the matrix size is  $n \times n$ .



(c) All-to-one reduction of partial results



(d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case,  $p = n^2$  if the matrix size is  $n \times n$ .

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the n processes of each column, and all-to-one reduction in each row.
- Each of these operations takes  $\Theta(\log n)$  time and the parallel time is  $\Theta(\log n)$ .
- The cost (process-time product) is  $\Theta(n^2 \log n)$ ; hence, the algorithm is not cost-optimal.

- When using **fewer than**  $n^2$  **processors**, each process owns **an**  $(n/\sqrt{p}) \times (n/\sqrt{p})$  **block** of the matrix.
- The vector is distributed in portions of  $n/\sqrt{p}$  elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all  $n/\sqrt{p}$ .
- The computation is a product of an  $(n/\sqrt{p}) \times (n/\sqrt{p})$  submatrix with a vector of length  $n/\sqrt{p}$ .

The first alignment step takes time

$$t_s + t_w n / \sqrt{p}$$

The broadcast and reductions take time

$$(t_s + t_w n/\sqrt{p})\log(\sqrt{p})$$

Local matrix-vector products take time

$$t_c n^2/p$$

Total time is

$$T_P pprox rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$$

Scalability Analysis:

- $T_o = pT_p W = t_s p \log p + t_w n \sqrt{p} \log p$
- Equating  $T_0$  with W, term by term, for isoefficiency, we have,  $W = K^2 t_w^2 p \log^2 p$  as the dominant term.
- The isoefficiency due to concurrency is O(p).
- The **overall isoefficiency** is  $O(p \log^2 p)$  (due to the network bandwidth).
- For cost optimality, we have,  $W=n^2=p\log^2 p$  . For this, we have,  $p=O\left(\frac{n^2}{\log^2 n}\right)$

#### 1-D vs. 2-D Partitioning

|                                         | 1-D                                        | 2-D                                                                  |
|-----------------------------------------|--------------------------------------------|----------------------------------------------------------------------|
| Max num. of processors                  | $p \leq n$                                 | $p \le n^2$                                                          |
| $T_p$                                   | $T_P = rac{n^2}{p} + t_s \log p + t_w n.$ | $T_P pprox rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$ |
| isoefficiency                           | $O(p^2)$                                   | $O(p \log^2 p)$                                                      |
| Max num. of processors (cost-optimally) | p = O(n)                                   | $p = O\left(rac{n^2}{\log^2 n} ight)$                               |

- Consider the problem of multiplying two n x n dense, square matrices A and B to yield the product matrix C = A x B.
- The serial complexity is  $O(n^3)$ .
- We do not consider better serial algorithms
   (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an  $n \times n$  matrix A can be regarded as a  $q \times q$  array of blocks  $A_{i,j}$  ( $0 \le i, j < q$ ) such that each block is an  $(n/q) \times (n/q)$  submatrix.
- In this view, we perform  $q^3$  matrix multiplications, each involving  $(n/q) \times (n/q)$  matrices.

- Consider two  $n \times n$  matrices A and B partitioned into p blocks  $A_{i,j}$  and  $B_{i,j}$  ( $0 \le i, j < \sqrt{p}$ ) of size  $(n/\sqrt{p}) \times (n/\sqrt{p})$  each.
- Process  $P_{i,j}$  initially stores  $A_{i,j}$  and  $B_{i,j}$  and computes block  $C_{i,j}$  of the result matrix.
- Computing submatrix  $C_{i,j}$  requires all submatrices  $A_{i,k}$  and  $B_{k,j}$  for  $0 \le k < \sqrt{p}$ .
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.



The two broadcasts take time

$$2(t_s\log(\sqrt{p})+t_w(n^2/p)(\sqrt{p}-1))$$

- The computation requires  $\sqrt{p}$  multiplications of  $(n/\sqrt{p}) \times (n/\sqrt{p})$  sized submatrices.
- The parallel run time is approximately

$$T_P = rac{n^3}{p} + t_s \log p + 2t_w rac{n^2}{\sqrt{p}}.$$

- The algorithm is cost optimal and the isoefficiency is  $O(p^{1.5})$  due to bandwidth term  $t_w$  and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

- In this algorithm, we **schedule the computations** of the  $\sqrt{p}$  processes of the *i*th row such that, at any given time, each process is using a different block  $A_{i,k}$ .
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh  $A_{i,k}$  after each rotation.













| $C_{0,0}$ | $C_{0,1}$ | $C_{0,2}$ |
|-----------|-----------|-----------|
| $C_{I,0}$ | $C_{I,I}$ | $C_{1,2}$ |
| $C_{2,0}$ | $C_{2,1}$ | $C_{2,2}$ |

Communication steps in Cannon's algorithm on 9 processes.

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices A<sub>i,j</sub> to the left (with wraparound) by i steps and all submatrices B<sub>i,j</sub> up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all  $\sqrt{p}$  blocks have been multiplied.

- In the alignment step, since the maximum distance over which a block shifts is  $\sqrt{p}-1$ , the **two shift operations** require a total of  $2(t_s+t_wn^2/p)$  time.
- Each of the  $\sqrt{p}$  single-step shifts in the **compute-and-shift phase** of the algorithm takes  $t_s + t_w n^2/p$  time.
- The computation time for **multiplying**  $\sqrt{p}$  **matrices** of size  $(n/\sqrt{p}) \times (n/\sqrt{p})$  is  $n^3/p$ .
- The parallel time is approximately:

$$T_P = rac{n^3}{p} + 2\sqrt{p}t_s + 2t_wrac{n^2}{\sqrt{p}}.$$

 The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.

27

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube. Matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal **node in the cube represents a single add-multiply operation** (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.



The communication steps in the DNS algorithm while multiplying  $4 \times 4$  matrices A and B on 64 processes.



(c) After broadcasting A[i,j] along j axis

(d) Corresponding distribution of B

The communication steps in the DNS algorithm while multiplying  $4 \times 4$  matrices A and B on 64 processes.

- Assume an  $n \times n \times n$  mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes log n time, the total runtime is log n.
- This is not cost optimal. It can be made cost optimal by using n / log n processors along the direction of accumulation.

#### Using fewer than $n^3$ processors.

- Assume that the number of processes p is equal to  $q^3$  for some q < n.
- The two matrices are partitioned into blocks of size  $(n/q) \times (n/q)$ .
- Each matrix can thus be regarded as a q x q twodimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Using fewer than  $n^3$  processors.

- The first one-to-one **communication** step is performed for both A and B, and takes  $t_s + t_w(n/q)^2$ time for each matrix.
- The two **one-to-all broadcasts** take  $2(t_s \log q + t_w(n/q)^2 \log q)$  time for each matrix.
- The **reduction** takes time  $t_s \log q + t_w (n/q)^2 \log q$ .
- Multiplication of  $(n/q) \times (n/q)$  submatrices takes  $(n/q)^3$  time.
- The parallel time is approximated by:

$$T_P = rac{n^3}{p} + t_s \log p + t_w rac{n^2}{p^{2/3}} \log p.$$

• The isoefficiency function is  $\Theta(p(\log p)^3)$ .

#### Cannon's vs. DNS Algorithm

|                                         | Cannon's                                                       | DNS                                                                |  |  |  |
|-----------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Max num. of processors                  | $p \le n^2$                                                    | $p \le n^3$                                                        |  |  |  |
| $T_p$                                   | $T_P = rac{n^3}{p} + 2\sqrt{p}t_s + 2t_wrac{n^2}{\sqrt{p}}.$ | $T_P = rac{n^3}{p} + t_s \log p + t_w rac{n^2}{p^{2/3}} \log p.$ |  |  |  |
| W                                       | $O(p^{1.5})$                                                   | $\Theta(p(\log p)^3)$                                              |  |  |  |
| Max num. of processors (cost-optimally) | $p = O(n^2)$                                                   | $p = O(n^3/\log^3 p)$                                              |  |  |  |

#### Solving a System of Linear Equations

 Consider the problem of solving linear equations of the kind:

• This is **written as** Ax = b, where A is an  $n \times n$  matrix with  $A[i,j] = a_{i,j}$ , b is an  $n \times 1$  vector  $[b_0, b_1, \dots, b_{n-1}]^T$ , and x is the solution.

#### Solving a System of Linear Equations

Two steps in solution are: **reduction to triangular form**, and **back-substitution**. The triangular form is as:

$$x_0 + u_{0,1}x_1 + u_{0,2}x_2 + \cdots + u_{0,n-1}x_{n-1} = y_0,$$
 $x_1 + u_{1,2}x_2 + \cdots + u_{1,n-1}x_{n-1} = y_1,$ 
 $\vdots \qquad \vdots \qquad \vdots$ 
 $x_{n-1} = y_{n-1}.$ 

We write this as: Ux = y.

A commonly used method for transforming a given matrix into an upper-triangular matrix is **Gaussian Elimination**.

#### **Gaussian Elimination**

```
1.
         procedure GAUSSIAN_ELIMINATION (A, b, y)
2.
         begin
3.
            for k := 0 to n - 1 do /* Outer loop */
4.
            begin
5.
               for i := k + 1 to n - 1 do
6.
                  A[k,j] := A[k,j]/A[k,k]; /* Division step */
7.
               y[k] := b[k]/A[k, k]:
8.
               A[k, k] := 1;
9.
               for i := k + 1 to n - 1 do
10.
               begin
11.
                  for i := k + 1 to n - 1 do
12.
                     A[i,j] := A[i,j] - A[i,k] \times A[k,j]; /* Elimination step */
                  b[i] := b[i] - A[i, k] \times y[k];
13.
                  A[i,k] := 0;
14.
15.
               endfor: /* Line 9 */
                    /* Line 3 */
16.
            endfor:
17.
         end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

#### **Gaussian Elimination**

• The computation has **three nested loops** - in the kth iteration of the outer loop, the algorithm **performs**  $(n-k)^2$  **computations**. Summing from k = 1..n, we have roughly  $(n^3/3)$  multiplications-subtractions.



A typical computation in Gaussian elimination.

#### Parallel Gaussian Elimination

- Assume p = n with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time (n-k) in the  $k^{th}$ iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time  $(t_s + t_w(n - k - 1)) \log n$ .
- Each processor can independently eliminate this row from its own. This **requires** (*n-k-1*) multiplications and subtractions.
- The total parallel time can be computed by summing from k=1 ... n-1 as  $T_P=rac{3}{2}n(n-1)+t_sn\log n+rac{1}{2}t_wn(n-1)\log n.$

• The formulation is **not cost optimal** because of the  $t_w$ term.

#### **Parallel Gaussian Elimination**

| 1) | $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|----|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| ') | P              | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
|    | P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
|    | P <sub>3</sub> | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| -  | P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
|    | P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
|    | $P_6$          | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
|    | P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| $P_l$          | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| P <sub>3</sub> | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| $P_4$          | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(i) 
$$A[k,j] := A[k,j]/A[k,k]$$
 for  $k < j <$ 

(ii) 
$$A[k,k] := 1$$

(b) Communication:

One-to-all broadcast of row A[k,\*]

(i) 
$$A[i,j] := A[i,j] - A[i,k] \times A[k,j]$$
  
for  $k < i < n$  and  $k < j < n$ 

(ii) 
$$A[i,k] := 0$$
 for  $k < i < n$ 

# Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the  $(k+1)^{st}$  iteration starts only after all the computation and communication for the  $k^{th}$  iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor  $P_k$  waits to receive and eliminate all rows prior to k.
- Once it has done this, it forwards its own row to processor  $P_{k+1}$ .

# Parallel Gaussian Elimination: Pipelined Execution



Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row per process.

## Parallel Gaussian Elimination: Pipelined Execution

- The **total number of steps** in the entire pipelined procedure is  $\Theta(n)$ .
- In any step, either O(n) elements are communicated between directly-connected processes, or a division step is performed on O(n) elements of a row, or an elimination step is performed on O(n) elements of a row.
- The parallel time is therefore  $O(n^2)$ .
- This is cost optimal.

#### Parallel Gaussian Elimination: Block 1D with p < n

- The above algorithm can be easily adapted to the case when p < n.</li>
- In the kth iteration, a processor with all rows belonging to the active part of the matrix performs (n-k-1)/np multiplications and subtractions.
- In the pipelined version, for n > p, computation dominates communication.
- The parallel time is given by:  $2(n/p)\sum_{k=0}^{n-1}(n-k-1)$  or approximately,  $n^3/p$ .
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.

## Parallel Gaussian Elimination: Block 1D with p < n





One- and two-dimensional block-cyclic distributions among four processes

#### Parallel Gaussian Elimination: Block 1D with p < n

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last *p* rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of  $O(n^2p)$  (instead of  $O(n^3)$  in the previous case).