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Topic Overview

• Matrix-Vector Multiplication 

• Matrix-Matrix Multiplication 

• Solving a System of Linear Equations 
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Matix Algorithms: Introduction 

• Due to their regular structure, parallel computations 

involving matrices and vectors readily lend themselves to 

data-decomposition. 

• Typical algorithms rely on input, output, or 

intermediate data decomposition. 

• Most algorithms use one- and two-dimensional block, 

cyclic, and block-cyclic partitionings. 
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Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1

vector x to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and 

additions.
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Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

• The n x n matrix is partitioned among n processors, 

with each processor storing complete row of the 

matrix. 

• The n x 1 vector x is distributed such that each 

process owns one of its elements. 
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Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using rowwise 

block 1-D partitioning. For the one-row-per-process case, p = n. 6
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Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

• Since each process starts with only one element of  x , 

an all-to-all broadcast is required to distribute all the 

elements to all the processes. 

• Process Pi now computes                                       .   

• The all-to-all broadcast and the computation of  y[i] both 

take time  Θ(n) . Therefore, the parallel time is Θ(n) . 
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Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• Consider now the case when p < n and we use block 1D 
partitioning.

• Each process initially stores n/p complete rows of the 
matrix and a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes 
and involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure is

This is cost-optimal.
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Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

Scalability Analysis:

• We know that T0 = pTP - W, therefore, we have,

• For isoefficiency, we have W = KT0, where K = E/(1 – E)
for desired efficiency E.

• From this, we have W = O(p2) (from the tw term).

• There is also a bound on isoefficiency because of 
concurrency. In this case, p < n, therefore, W = n2 = 
Ω(p2).

• Overall isoefficiency is W = O(p2).
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Matrix-Vector Multiplication: 

2-D Partitioning

• The n x n matrix is partitioned among n2 processors 

such that each processor owns a single element.

• The n x 1 vector x is distributed only in the last 

column of n processors.
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Matrix-Vector Multiplication: 

2-D Partitioning

• We must first align the vector with the matrix 

appropriately. 

• The first communication step for the 2-D partitioning 

aligns the vector x along the principal diagonal of the 

matrix. 

• The second step copies the vector elements from each 

diagonal process to all the processes in the 

corresponding column using n simultaneous 

broadcasts among all processors in the column. 

• Finally, the result vector is computed by performing an 

all-to-one reduction along the columns. 
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Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the

one-element-per-process case, p = n2 if the matrix size is n x n .
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Matrix-Vector Multiplication: 

2-D Partitioning

• Three basic communication operations are used in 

this algorithm: one-to-one communication to align the 

vector along the main diagonal, one-to-all broadcast of 

each vector element among the n processes of each 

column, and all-to-one reduction in each row. 

• Each of these operations takes  Θ(log n) time and the 

parallel time is Θ(log n) . 

• The cost (process-time product) is Θ(n2 log n) ; hence, 

the algorithm is not cost-optimal. 
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Matrix-Vector Multiplication: 

2-D Partitioning

• When using fewer than  n2 processors, each process 

owns an                           block of the matrix. 

• The vector is distributed in portions of            elements in 

the last process-column only. 

• In this case, the message sizes for the alignment, 

broadcast, and reduction are all           . 

• The computation is a product of an                     

submatrix with a vector of length         . 
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Matrix-Vector Multiplication: 

2-D Partitioning

• The first alignment step takes time    

• The broadcast and reductions take time  

• Local matrix-vector products take time   

• Total time is 

17



Matrix-Vector Multiplication: 

2-D Partitioning

• Scalability Analysis: 

•

• Equating T0 with W, term by term, for isoefficiency, we 

have,                              as the dominant term. 

• The isoefficiency due to concurrency is  O(p).

• The overall isoefficiency is                   (due to the 

network bandwidth). 

• For cost optimality, we have,                              . For this, 

we have,  
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1-D vs. 2-D Partitioning
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1-D 2-D

Max num. of 

processors

p  n p  n2

Tp

isoefficiency

Max num. of 

processors

(cost-optimally)

O(p2)

p = O(n)



Matrix-Matrix Multiplication 

• Consider the problem of multiplying two n x n dense, 

square matrices A and B to yield the product matrix        

C =A x B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms 

(Strassen's method), although, these can be used as 

serial kernels in the parallel algorithms.

• A useful concept in this case is called block operations. 

In this view, an n x n matrix A can be regarded as a q x q

array of blocks Ai,j (0 ≤ i, j < q) such that each block is an 

(n/q) x (n/q) submatrix.

• In this view, we perform q3 matrix multiplications, 

each involving (n/q) x (n/q) matrices. 20



Matrix-Matrix Multiplication

• Consider two n x n matrices A and B partitioned into 

p blocks Ai,j and Bi,j (0 ≤ i, j < ) of size                      

each.

• Process Pi,j initially stores Ai,j and Bi,j and computes 

block Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k

and Bk,j for 0 ≤ k <     .

• All-to-all broadcast blocks of A along rows and B

along columns.

• Perform local submatrix multiplication.
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Matrix-Matrix Multiplication
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Ai,j Bi,j Ci,j

x =



Matrix-Matrix Multiplication

• The two broadcasts take time

• The computation requires       multiplications of             
sized submatrices. 

• The parallel run time is approximately 

• The algorithm is cost optimal and the isoefficiency is   
O(p1.5) due to bandwidth term  tw and concurrency. 

• Major drawback of the algorithm is that it is not memory 
optimal. 
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Matrix-Matrix Multiplication: 

Cannon's Algorithm

• In this algorithm, we schedule the computations of the     

processes of the ith row such that, at any given time, 

each process is using a different block Ai,k.

• These blocks can be systematically rotated among 

the processes after every submatrix multiplication so that 

every process gets a fresh Ai,k after each rotation.
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Matrix-Matrix Multiplication: 

Cannon's Algorithm

Communication steps in Cannon's algorithm on 9 processes.
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Matrix-Matrix Multiplication: 

Cannon's Algorithm

• Align the blocks of A and B in such a way that each 

process multiplies its local submatrices. This is done 

by shifting all submatrices Ai,j to the left (with 

wraparound) by i steps and all submatrices Bi,j up (with 

wraparound) by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block 

of B moves one step up (again with wraparound).

• Perform next block multiplication, add to partial 

result, repeat until all      blocks have been multiplied.
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Matrix-Matrix Multiplication: 

Cannon's Algorithm

• In the alignment step, since the maximum distance over 
which a block shifts is           , the two shift operations 
require a total of                        time. 

• Each of the       single-step shifts in the compute-and-
shift phase of the algorithm takes                    time. 

• The computation time for multiplying       matrices of 
size       is        . 

• The parallel time is approximately: 

• The cost-efficiency and isoefficiency of the algorithm 
are identical to the first algorithm, except, this is 
memory optimal. 
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Matrix-Matrix Multiplication: 

DNS Algorithm

• Uses a 3-D partitioning.

• Visualize the matrix multiplication algorithm as a 

cube. Matrices A and B come in two orthogonal faces 

and result C comes out the other orthogonal face.

• Each internal node in the cube represents a single 

add-multiply operation (and thus the complexity).

• DNS algorithm partitions this cube using a 3-D block 

scheme.
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Matrix-Matrix Multiplication: 

DNS Algorithm

The communication steps in the DNS algorithm while 

multiplying 4 x 4 matrices A and B on 64 processes. 29
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Matrix-Matrix Multiplication: 

DNS Algorithm

• Assume an n x n x n mesh of processors.

• Move the columns of A and rows of B and perform 
broadcast.

• Each processor computes a single add-multiply.

• This is followed by an accumulation along the C
dimension.

• Since each add-multiply takes constant time and 
accumulation and broadcast takes log n time, the total 
runtime is log n.

• This is not cost optimal. It can be made cost optimal 
by using n / log n processors along the direction of 
accumulation.
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Matrix-Matrix Multiplication: 

DNS Algorithm

Using fewer than n3 processors.

• Assume that the number of processes p is equal to q3 for 

some q < n.

• The two matrices are partitioned into blocks of size 

(n/q) x(n/q).

• Each matrix can thus be regarded as a q x q two-

dimensional square array of blocks.

• The algorithm follows from the previous one, except, in 

this case, we operate on blocks rather than on 

individual elements.
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Matrix-Matrix Multiplication: 

DNS Algorithm

Using fewer than n3 processors. 

• The first one-to-one communication step is performed for 
both A and B, and takes                    time for each matrix. 

• The two one-to-all broadcasts take                              
time for each matrix. 

• The reduction takes time                                  . 

• Multiplication of                     submatrices takes         
time. 

• The parallel time is approximated by: 

• The isoefficiency function is                   . 
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Cannon's vs. DNS Algorithm
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Cannon’s DNS

Max num. of 

processors

p  n2 p  n3

Tp

W

Max num. of 

processors

(cost-optimally)

O(p1.5)

p = O(n2) p = O(n3/log3p)



Solving a System of  Linear Equations

• Consider the problem of solving linear equations of the 

kind:

• This is written as Ax = b, where A is an n x n matrix with 

A[i, j] = ai,j, b is an n x 1 vector [ b0, b1, … , bn-1 ]T, and x is 

the solution.
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Solving a System of  Linear Equations

Two steps in solution are: reduction to triangular form, 

and back-substitution. The triangular form is as:

We write this as:  Ux = y . 

A commonly used method for transforming a given matrix 

into an upper-triangular matrix is Gaussian Elimination.  
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Gaussian Elimination

Serial Gaussian Elimination
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Gaussian Elimination

• The computation has three nested loops - in the kth 

iteration of the outer loop, the algorithm performs (n-k)2

computations. Summing from k = 1..n, we have roughly 

(n3/3) multiplications-subtractions.

A typical computation in Gaussian elimination.
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Parallel Gaussian Elimination

• Assume p = n with each row assigned to a processor. 

• The first step of the algorithm normalizes the row. This 
is a serial operation and takes time  (n-k) in the   kth

iteration. 

• In the second step, the normalized row is broadcast to 
all the processors. This takes time                                   . 

• Each processor can independently eliminate this row
from its own. This requires  (n-k-1) multiplications and 
subtractions. 

• The total parallel time can be computed by summing 
from   k = 1 … n-1 as 

• The formulation is not cost optimal because of the tw

term. 39



Parallel Gaussian Elimination

Gaussian elimination steps during the iteration corresponding k = 3 40
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Parallel Gaussian Elimination: 

Pipelined Execution

• In the previous formulation, the (k+1)st iteration starts 

only after all the computation and communication for the 

kth iteration is complete.

• In the pipelined version, there are three steps -

normalization of a row, communication, and 

elimination. These steps are performed in an 

asynchronous fashion.

• A processor Pk waits to receive and eliminate all rows 

prior to k.

• Once it has done this, it forwards its own row to 

processor Pk+1.
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Parallel Gaussian Elimination: 

Pipelined Execution

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned 

withone row per process. 42



Parallel Gaussian Elimination: 

Pipelined Execution

• The total number of steps in the entire pipelined 

procedure is Θ(n).

• In any step, either O(n) elements are communicated 

between directly-connected processes, or a division 

step is performed on O(n) elements of a row, or an 

elimination step is performed on O(n) elements of a 

row.

• The parallel time is therefore O(n2) .

• This is cost optimal.
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Parallel Gaussian Elimination: 

Block 1D with p < n

• The above algorithm can be easily adapted to the case 
when p < n.

• In the kth iteration, a processor with all rows belonging to 
the active part of the matrix performs (n – k -1) / np
multiplications and subtractions.

• In the pipelined version, for n > p, computation dominates 
communication.

• The parallel time is given by:                                               

or approximately, n3/p.

• While the algorithm is cost optimal, the cost of the parallel 
algorithm is higher than the sequential run time by a factor 
of 3/2.
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Parallel Gaussian Elimination: 

Block 1D with p < n

One- and two-dimensional block-cyclic distributions among four 

processes
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Parallel Gaussian Elimination: 

Block 1D with p < n

• The load imbalance problem can be alleviated by using a 

cyclic mapping.

• In this case, other than processing of the last p rows, 

there is no load imbalance.

• This corresponds to a cumulative load imbalance 

overhead of O(n2p) (instead of O(n3) in the previous 

case).
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