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Topic Overview

« Matrix-Vector Multiplication
« Matrix-Matrix Multiplication
« Solving a System of Linear Equations



Matix Algorithms: Introduction

« Due to their regular structure, parallel computations
Involving matrices and vectors readily lend themselves to
data-decomposition.

» Typical algorithms rely on input, output, or
Intermediate data decomposition.

* Most algorithms use one- and two-dimensional block,
cyclic, and block-cyclic partitionings.



Matrix-Vector Multiplication

We aim to multiply a dense n x n matrix A withannx1
vector x to yield the n x 1 result vectory.

The serial algorithm requires n? multiplications and
additions.

W = n?



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

 The n x n matrix is partitioned among n processors,

with each processor storing complete row of the
matrix.

« The nx 1 vector xis distributed such that each
process owns one of its elements.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
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Multiplication of an n X n matrix with an n x 1 vector using rowwise
block 1-D partitioning. For the one-row-per-process case, p = n.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
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Multiplication of an n X n matrix with an n x 1 vector using rowwise
block 1-D partitioning. For the one-row-per-process case, p = n.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

« Since each process starts with only one element of x,
an all-to-all broadcast is required to distribute all the
elements to all the processes.

* Process P; now computes yli] = 7= (A[i, 7] x z[4]) .

« The all-to-all broadcast and the computation of y[i] both
take time @(n) . Therefore, the parallel time is @(n) .



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Consider now the case when p < n and we use block 1D
partitioning.

Each process initially stores n/p complete rows of the
matrix and a portion of the vector of size n/p.

The all-to-all broadcast takes place among p processes
and involves messages of size n/p.

This is followed by n/p local dot products.

Thus, the parallel run time of this procedure is
2

Tp = i + tslogp + tyn.
p

This is cost-optimal.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Scalability Analysis:

We know that T, = pT, - W, therefore, we have,

T, =tsplogp + tynp.
For isoefficiency, we have W = KT,, where K = E/(1 — E)
for desired efficiency E.

From this, we have W = O(p?) (from the t, term).

There is also a bound on isoefficiency because of
concurrency. In this case, p <n, therefore, W = n? =

Q(p?).
Overall isoefficiency is W = O(p?).
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Matrix-Vector Multiplication:
2-D Partitioning

The n x n matrix is partitioned among n? processors
such that each processor owns a single element.

The n x 1 vector x is distributed only in the last
column of n processors.

11



Matrix-Vector Multiplication:
2-D Partitioning

We must first align the vector with the matrix
appropriately.
The first communication step for the 2-D partitioning

aligns the vector x along the principal diagonal of the
matrix.

The second step copies the vector elements from each
diagonal process to all the processes in the
corresponding column using n simultaneous
broadcasts among all processors in the column.

Finally, the result vector is computed by performing an
all-to-one reduction along the columns.

12



Matrix-Vector Multiplication: 2-D Partitioning
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Matrix-vector multiplication with block 2-D partitioning. For the
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Matrix-Vector Multiplication: 2-D Partitioning
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Matrix-vector multiplication with block 2-D partitioning. For the
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Matrix-Vector Multiplication:
2-D Partitioning

 Three basic communication operations are used in
this algorithm: one-to-one communication to align the
vector along the main diagonal, one-to-all broadcast of
each vector element among the n processes of each
column, and all-to-one reduction in each row.

« Each of these operations takes ®(log n) time and the
parallel time is ®(log n) .

« The cost (process-time product) is ®(n? log n) ; hence,
the algorithm is not cost-optimal.
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Matrix-Vector Multiplication:
2-D Partitioning

When using fewer than n? processors, each process
owns an (n/,/p) x (n/,/p) block of the matrix.

The vector is distributed in portions of n/\/? elements in
the last process-column only.

In this case, the message sizes for the alignment,
broadcast, and reduction are all n/,/p .

The computation is a product of an (n/,/p) x (n/,/p)
submatrix with a vector of lengthn/, /5.

16



Matrix-Vector Multiplication:
2-D Partitioning

The first alignment step takes time

te +twn/\/D

The broadcast and reductions take time

(ts + twn//p)log(\/P)

Local matrix-vector products take time

tcnz/P
Total time is
2

n n
Tp ~ — + tslogp + ty—logp
p

VP
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Matrix-Vector Multiplication:
2-D Partitioning

Scalability Analysis:

T, =pT, — W =t;plogp+tyn,/plogp

Equating T, with W, term by term, for isoefficiency, we
have, W = K%t2plog?p as the dominant term.

The isoefficiency due to concurrency is O(p).

The overall isoefficiency is O(plog®p) (due to the
network bandwidth).

For cost optimality, we have, W = n? = plog®p . For this,
we have, p — O (_nj_)

log“n
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1-D vs. 2-D Partitioning

1-D 2-D
Max num. of p<n p <n?
processors
T n’ n? n
P Tp = — +tslogp + twn. Tp ~ —+tslogp +ty—Ilogp
p p VP

isoefficiency 2

O(p?) O(plog™p)
Max num. of
processors 0 = O(n) p=0 ( lﬂnz_ )
(cost-optimally) os
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Matrix-Matrix Multiplication

Consider the problem of multiplying two n x n dense,
square matrices A and B to yield the product matrix
C=AxB.

The serial complexity is O(n®).
We do not consider better serial algorithms

(Strassen's method), although, these can be used as
serial kernels in the parallel algorithms.

A useful concept in this case is called block operations.
In this view, an n X n matrix A can be regarded as a q x g
array of blocks A;; (0 <1, j <) such that each block is an
(n/g) x (n/g) submatrix.

In this view, we perform ¢° matrix multiplications,
each involving (n/q) x (n/q) matrices. 20



Matrix-Matrix Multiplication

Consider two N X N matrices A and B partitioned into
p blocks A;;and B;; (0 <i, j <y? ) of size (n/\/p) x (n/\/P)
each.

Process P;;initially stores A;; and B;; and computes
block C;; of the result matrix.

Computing submatrix C;; requires all submatrices A;,
and B, ; forO sk < /P.

All-to-all broadcast blocks of A along rows and B
along columns.

Perform local submatrix multiplication.

21



Matrix-Matrix Multiplication

(n//B) x (n//P)
v

B L

i
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Matrix-Matrix Multiplication

The two broadcasts take time
2(ts log(y/pP) + tw(n®/p)(/P — 1))

The computation requires /» multiplications of
(n/\/pP) x (n/\/P) sized submatrices.

The parallel run time is approximately
3 2
Tp = i +tslogp + Qtwn—.
p

VP

The algorithm is cost optimal and the isoefficiency is
O(p'~) due to bandwidth term t, and concurrency.

Major drawback of the algorithm is that it is not memory
optimal.
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Matrix-Matrix Multiplication:
Cannon's Algorithm

 In this algorithm, we schedule the computations of the
/P processes of the ith row such that, at any given time,
each process is using a different block A, .

 These blocks can be systematically rotated among
the processes after every submatrix multiplication so that
every process gets a fresh A, after each rotation.
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Matrix-Matrix Multiplication:
Cannon's Algorithm
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Communication steps in Cannon's algorithm on 9 processes.
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Matrix-Matrix Multiplication:
Cannon's Algorithm

Align the blocks of A and B in such a way that each
process multiplies its local submatrices. This is done
by shifting all submatrices A;; to the left (with

wraparound) by i steps and all submatrices B;; up (with
wraparound) by | steps.

Perform local block multiplication.

Each block of A moves one step left and each block
of B moves one step up (again with wraparound).

Perform next block multiplication, add to partial
result, repeat until all v? blocks have been multiplied.

26



Matrix-Matrix Multiplication:
Cannon's Algorithm

In the alignment step, since the maximum distance over
which a block shifts is ,/p — 1, the two shift operations
require a total of 2, 1 ¢,n2/p) time.

Each of the /p single-step shifts in the compute-and-
shift phase of the algorithm takest¢, + t,n%/p time.

The computation time for multiplying ,/» matrices of
size (n/\/p) x(n/\/p) isn’/p.

The parallel time is approximately:
?’LS ?’L2
Tp = — + 2./pts + 2ty—.
P VP 7
The cost-efficiency and isoefficiency of the algorithm
are identical to the first algorithm, except, this is

memory optimal. .



Matrix-Matrix Multiplication:
DNS Algorithm

Uses a 3-D partitioning.
Visualize the matrix multiplication algorithm as a

cube. Matrices A and B come in two orthogonal faces
and result C comes out the other orthogonal face.

Each internal node in the cube represents a single
add-multiply operation (and thus the complexity).

DNS algorithm partitions this cube using a 3-D block
scheme.

28



Matrix-Matrix Multiplication:
DNS Algorithm
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The communication steps in the DNS algorithm while
multiplying 4 x 4 matrices A and B on 64 processes. 29



Matrix-Matrix Multiplication:
DNS Algorithm
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Matrix-Matrix Multiplication:
DNS Algorithm

Assume an N X N X N mesh of processors.

Move the columns of A and rows of B and perform
broadcast.

Each processor computes a single add-multiply.

This is followed by an accumulation along the C
dimension.

Since each add-multiply takes constant time and
accumulation and broadcast takes log n time, the total
runtime is log n.

This is not cost optimal. It can be made cost optimal
by using n/ log n processors along the direction of
accumulation.
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Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than n3 processors.

Assume that the number of processes p is equal to g3 for
some g <n.

The two matrices are partitioned into blocks of size
(n/g) x(n/q).

Each matrix can thus be regarded as a q X q two-
dimensional square array of blocks.

The algorithm follows from the previous one, except, In
this case, we operate on blocks rather than on
Individual elements.

32



Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than n3 processors.

The first one-to-one communication step is performed for
both A and B, and takes t, + t.,(n/q)*time for each matrix.

The two one-to-all broadcasts take 2(tsloggq + t.(n/q)*logq)
time for each matrix.

The reduction takes time t,logq + t.(n/q)*logq .

Multiplication of (n/q) x (n/q) submatrices takes (n/q)*
time.

The parallel time is approximated by:
3 2

n n
Tp = —+tslogp+tw%10gp.
p p

The isoefficiency function is ©(p(logp)?) -
33



Cannon's vs. DNS Algorithm

Cannon’s DNS
Max num. of p <n? p <nd
pProcessors
T 3 2 3 2

p n n _n R

W O(p*5) O(p(logp)?)
Max num. of
Processors p=0(n?) p = O(n*/log>p)
(cost-optimally)




Solving a System of Linear Equations

« Consider the problem of solving linear equations of the
kind:

ap.0To + apir) + -+ app_1Tn—1 = byg,
a1.0Tp + a7 + -+ ay,1Tn-1 = by,
(lr—1.0L0 + p—11T1 + - Oy 101 = bﬂ—l'

« This is written as Ax = b, where A I1s an N X N matrix with
Ali,jl1=a;;, bisann X 1 vector [ by, by, ..., b, T, and x is
the solution.

35



Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form,
and back-substitution. The triangular form is as:

rg + upgiry+ upagrot - + Ugnp-1Tn—1 = Yo.
ry + upprst+ - t UL p—1Tn-1 = Y1,
' ]

Ln—1 = Yn-1.

We write thisas: Ux=y.

A commonly used method for transforming a given matrix
Into an upper-triangular matrix is Gaussian Elimination.

36
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Gaussian Elimination

procedure GAUSSIAN_ELIMINATION (A, b, v)
begin
fork :=0ton — 1 do /" Quter loop */
begin
forj :=k+1ton — 1do
Alk, 7] == Alk, j]/Alk, k]; /* Division step */
ylk] == blk]/A[k, k]

Alk, k] :=1;
fori :=k+1ton — 1do
begin
forj:=k+1ton —1do
Ali, 4] = Ali, 7] — Ali, k] x A[k, 7; /" Elimination step */
bli] := b[i] — Ali, k] x y[k];
Ali k] == 0;
endfor; /*Line 9%/
endfor:; /*Lline 3%/

end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination
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Gaussian Elimination

« The computation has three nested loops - in the kth
iteration of the outer loop, the algorithm performs (n-k)2
computations. Summing from k = 1..n, we have roughly

(n3/3) multiplications-subtractions.

Column_j

Inactive part

Column K

o Rowk | (k) —= (k) ° - Alk,jl := AlkjVA[KK]
Active parl

v : _ . .
CRewi (i) — > () - Alij] = Alij] - Alik] x Afk,j]

A typical computation in Gaussian elimination. 38



Parallel Gaussian Elimination

Assume p = n with each row assigned to a processor.

The first step of the algorithm normalizes the row. This
IS a serial operation and takes time (n-k) in the k"
iteration.

In the second step, the normalized row is broadcast to
all the processors. This takes time (ts + ty(n — k — 1)) logn.

Each processor can independently eliminate this row
from its own. This requires (n-k-1) multiplications and
subtractions.

The total parallel time can be computed by summing

from k=1..#n1as

3 1
Tp = §n(n — 1)+ tsnlogn + §twn(n — 1) logn.

The formulation is not cost optimal because of the t,,
term. 39



Parallel Gaussian Elimination
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(b) Communication:
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Gaussian elimination steps during the iteration corresponding k=3 40



Parallel Gaussian Elimination:
Pipelined Execution

In the previous formulation, the (k+1)St iteration starts
only after all the computation and communication for the
kth iteration is complete.

In the pipelined version, there are three steps -
normalization of a row, communication, and
elimination. These steps are performed in an
asynchronous fashion.

A processor P, waits to receive and eliminate all rows
prior to k.

Once it has done this, it forwards its own row to
processor P,,;.
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Parallel Gaussian Elimination:

Pipelined Execution
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Pipelined Gaussian elimination on a 5 x 5 matrix partitioned
withone row per process.



Parallel Gaussian Elimination:
Pipelined Execution

The total number of steps in the entire pipelined
procedure is O(n).

In any step, either O(n) elements are communicated
between directly-connected processes, or a division
step is performed on O(n) elements of a row, or an
elimination step is performed on O(n) elements of a
row.

The parallel time is therefore O(n?) .
This is cost optimal.
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Parallel Gaussian Elimination:
Block 1D with p <n

The above algorithm can be easily adapted to the case
when p <n.

In the kth iteration, a processor with all rows belonging to
the active part of the matrix performs (n—k-1) / np
multiplications and subtractions.

In the pipelined version, for n > p, computation dominates
communication.

The parallel time is given by: 2(n/p)Xp_5(n —k—1)
or approximately, n3/p.

While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run time by a factor
of 3/2.

45



Parallel Gaussian Elimination:
Block 1D with p <n

One- and two-dimensional block-cyclic distributions among four
processes
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Parallel Gaussian Elimination:
Block 1D with p <n

 The load imbalance problem can be alleviated by using a
cyclic mapping.

 In this case, other than processing of the last p rows,
there is no load imbalance.

« This corresponds to a cumulative load imbalance
overhead of O(n?p) (instead of O(n3) in the previous
case).
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