Dynamic Programming

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text `'Introduction to Parallel Computing", Addison Wesley, 2093

Topic Overview

- Overview of Serial Dynamic Programming
- Serial Monadic DP Formulations
- Nonserial Monadic DP Formulations
- Serial Polyadic DP Formulations
- Nonserial Polyadic DP Formulations

Overview of Serial Dynamic Programming

- Dynamic programming (DP) is used to solve a wide variety of discrete optimization problems such as scheduling, string-editing, packaging, and inventory management.
- Break problems into subproblems and combine their solutions into solutions to larger problems.
- In contrast to divide-and-conquer, there may be relationships across subproblems.

Dynamic Programming: Example

- Consider the problem of finding a shortest path between a pair of vertices in an acyclic graph.
- An edge connecting node i to node j has cost $c(i, j)$.
- The graph contains n nodes numbered $0,1, \ldots, n-1$, and has an edge from node i to node j only if $i<j$. Node 0 is source and node $n-1$ is the destination.
- Let $f(x)$ be the cost of the shortest path from node 0 to node x.

$$
f(x)= \begin{cases}0 & x=0 \\ \min _{0 \leq j<x}\{f(j)+c(j, x)\} & 1 \leq x \leq n-1\end{cases}
$$

Dynamic Programming: Example

- A graph for which the shortest path between nodes 0 and 4 is to be computed.

$$
f(4)=\min \{f(3)+c(3,4), f(2)+c(2,4)\} .
$$

Dynamic Programming

- The solution to a DP problem is typically expressed as a minimum (or maximum) of possible alternate solutions.
- If r represents the cost of a solution composed of subproblems $x_{1}, x_{2}, \ldots, x_{1}$, then r can be written as

$$
r=g\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{l}\right)\right) .
$$

Here, g is the composition function.

- If the optimal solution to each problem is determined by composing optimal solutions to the subproblems and selecting the minimum (or maximum), the formulation is said to be a DP formulation.

Dynamic Programming: Example

Composition of solutions into a term
\square Minimization of terms
The computation and composition of subproblem solutions to solve problem $f\left(x_{8}\right)$.

Dynamic Programming

- The recursive DP equation is also called the functional equation or optimization equation.
- In the equation for the shortest path problem the composition function is $f(j)+c(j, x)$. This contains a single recursive term $(f(j))$. Such a formulation is called monadic.
- If the RHS has multiple recursive terms, the DP formulation is called polyadic.

Dynamic Programming

- The dependencies between subproblems can be expressed as a graph.
- If the graph can be levelized (i.e., solutions to problems at a level depend only on solutions to problems at the previous level), the formulation is called serial, else it is called non-serial.
- Based on these two criteria, we can classify DP formulations into four categories - serial-monadic, serial-polyadic, non-serial-monadic, non-serialpolyadic.
- This classification is useful since it identifies concurrency and dependencies that guide parallel formulations.

Serial Monadic DP Formulations

- It is difficult to derive canonical parallel formulations for the entire class of formulations.
- For this reason, we select two representative examples, the shortest-path problem for a multistage graph and the 0/1 knapsack problem.
- We derive parallel formulations for these problems and identify common principles guiding design within the class.

Shortest-Path Problem

- Special class of shortest path problem where the graph is a weighted multistage graph of $r+1$ levels.
- Each level is assumed to have \boldsymbol{n} nodes and every node at level i is connected to every node at level $i+1$.
- Levels zero and r contain only one node, the source and destination nodes, respectively.
- The objective of this problem is to find the shortest path from S to R.

Shortest-Path Problem

An example of a serial monadic DP formulation for finding the shortest path in a graph whose nodes can be organized into levels.

Shortest-Path Problem

- The $i^{\text {th }}$ node at level / in the graph is labeled $\boldsymbol{v}_{i}^{\prime}$ and the cost of an edge connecting v_{i}^{\prime} to node v_{j}^{l+1} is labeled $\boldsymbol{c}_{i, j}^{\prime}$.
- The cost of reaching the goal node R from any node $\boldsymbol{v}_{i}^{\prime}$ is represented by $\boldsymbol{C}_{i}^{\prime}$.
- If there are n nodes at level I, the vector $\left[C_{0}{ }^{\prime}, C_{1}{ }^{\prime}, \ldots, C_{n-1}^{\prime}\right]^{\top}$ is referred to as C^{\prime}. Note that $C_{0}=\left[C_{0}{ }^{\circ}\right]$.
- We have $\boldsymbol{C}_{i}^{\prime}=\boldsymbol{\operatorname { m i n }}\left\{\left(\boldsymbol{c}_{i, j}^{\prime}+\boldsymbol{C}_{j}^{l+1}\right) \mid \boldsymbol{j}\right.$ is a node at level $I+$ 1\}

Shortest-Path Problem

- Since all nodes v_{j}^{r-1} have only one edge connecting them to the goal node R at level r, the cost C_{j}^{r-1} is equal to $c_{j,}^{r-{ }^{1}}{ }^{1}$.
- We have:

$$
\mathcal{C}^{r-1}=\left[c_{0, R}^{r-1}, c_{1, R}^{r-1}, \ldots, c_{n-1, R}^{r-1}\right]
$$

Notice that this problem is serial and monadic.

Shortest-Path Problem

- The cost of reaching the goal node R from any node at level $/$ is $(0<l<r-1)$ is

$$
\begin{aligned}
C_{0}^{l} & =\min \left\{\left(c_{0,0}^{l}+C_{0}^{l+1}\right),\left(c_{0,1}^{l}+C_{1}^{l+1}\right), \ldots,\left(c_{0, n-1}^{l}+C_{n-1}^{l+1}\right)\right\}, \\
C_{1}^{l} & =\min \left\{\left(c_{1,0}^{l}+C_{0}^{l+1}\right),\left(c_{1,1}^{l}+C_{1}^{l+1}\right), \ldots,\left(c_{1, n-1}^{l}+C_{n-1}^{l+1}\right)\right\}, \\
& \\
C_{n-1}^{l} & =\min \left\{\left(c_{n-1,0}^{l}+C_{0}^{l+1}\right),\left(c_{n-1,1}^{l}+C_{1}^{l+1}\right), \ldots,\left(c_{n-1, n-1}^{l}+C_{n-1}^{l+1}\right)\right\} .
\end{aligned}
$$

Shortest-Path Problem

- We can express the solution to the problem as a modified sequence of matrix-vector products.
- Replacing the addition operation by minimization and the multiplication operation by addition, the preceding set of equations becomes:

$$
\mathcal{C}^{l}=M_{l, l+1} \times \mathcal{C}^{l+1}
$$

where C^{\prime} and C^{I+1} are $n \times 1$ vectors representing the cost of reaching the goal node from each node at levels / and $l+1$.

Shortest-Path Problem

- Matrix $M_{l, l+1}$ is an $n \times n$ matrix in which entry (i, j) stores the cost of the edge connecting node i at level $/$ to node \boldsymbol{j} at level l+1.

$$
M_{l, l+1}=\left[\begin{array}{llll}
c_{0,0}^{l} & c_{0,1}^{l} & \ldots & c_{0, n-1}^{l} \\
c_{1,0}^{l} & c_{1,1}^{l} & \ldots & c_{1, n-1}^{l} \\
\vdots & \vdots & & \vdots \\
c_{n-1,0}^{l} & c_{n-1,1}^{l} & \ldots & c_{n-1, n-1}^{l}
\end{array}\right] .
$$

- The shortest path problem has been formulated as a sequence of r matrix-vector products.

Parallel Shortest-Path

- We can parallelize this algorithm using the parallel algorithms for the matrix-vector product.
- $\Theta(n)$ processing elements can compute each vector C^{\prime} in time $\Theta(n)$ and solve the entire problem in time $\theta(r n)$.
- In many instances of this problem, the matrix \boldsymbol{M} may be sparse. For such problems, it is highly desirable to use sparse matrix techniques.

0/1 Knapsack Problem

- We are given a knapsack of capacity \boldsymbol{c} and a set of \boldsymbol{n} objects numbered $1,2, \ldots, n$. Each object i has weight $\boldsymbol{w}_{\boldsymbol{i}}$ and profit $\boldsymbol{p}_{\boldsymbol{i}}$.
- Let $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be a solution vector in which $v_{i}=0$ if object i is not in the knapsack, and $v_{i}=1$ if it is in the knapsack.
- The goal is to find a subset of objects to put into the knapsack so that

$$
\sum_{i=1}^{n} w_{i} v_{i} \leq c
$$

(that is, the objects fit into the knapsack) and

$$
\sum_{i=1}^{n} p_{i} v_{i}
$$

is maximized (that is, the profit is maximized).

0/1 Knapsack Problem

- The naive method is to consider all 2^{n} possible subsets of the n objects and choose the one that fits into the knapsack and maximizes the profit.
- Let $F[i, x]$ be the maximum profit for a knapsack of capacity \boldsymbol{x} using only objects $\{1,2, \ldots, i\}$. The DP formulation is:

$$
F[i, x]= \begin{cases}0 & x \geq 0, i=0 \\ -\infty & x<0, i=0 \\ \max \left\{F[i-1, x],\left(F\left[i-1, x-w_{i}\right]+p_{i}\right)\right\} & 1 \leq i \leq n\end{cases}
$$

0/1 Knapsack Problem

- Construct a table Fof size $\boldsymbol{n} \boldsymbol{x} \boldsymbol{c}$ in row-major order.
- Filling an entry in a row requires two entries from the previous row: one from the same column and one from the column offset by the weight of the object corresponding to the row.
- Computing each entry takes constant time; the sequential run time of this algorithm is $\Theta(n c)$.
- The formulation is serial-monadic.

0/1 Knapsack Problem

Computing entries of table F for the $0 / 1$ knapsack problem. The computation of entry $F[i, j]$ requires communication with processing elements containing entries $F[i-1, j]$ and $F\left[i-1, j-w_{j}\right)^{2}$

0/1 Knapsack Problem

- Using c processors in a PRAM, we can derive a simple parallel algorithm that runs in $O(n)$ time by partitioning the columns across processors.
- In a distributed memory machine, in the $j^{\text {th }}$ iteration, for computing $F[j, r]$ at processing element $P_{r-1}, F[j-1, r]$ is available locally but $F\left[j-1, r-w_{j}\right]$ must be fetched.
- The communication operation is a circular shift and the time is given by $\left(t_{s}+t_{w}\right) \log c$. The total time is therefore $t_{c}+\left(t_{s}+t_{w}\right) \log c$.
- Across all n iterations (rows), the parallel time is $O(n \log$ c). Note that this is not cost optimal.

Nonserial Monadic DP Formulations: Longest-Common-Subsequence

- Given a sequence $A=<a_{1}, a_{2}, \ldots, a_{n}>$, a subsequence of \boldsymbol{A} can be formed by deleting some entries from A.
- Given two sequences $A=<a_{1}, a_{2}, \ldots, a_{n}>$ and $B=<b_{1}$, $b_{2}, \ldots, b_{m}>$, find the longest sequence that is a subsequence of both A and B.
- If $A=<c, \boldsymbol{a}, d, \boldsymbol{b}, r, \boldsymbol{z}>$ and $B=<\boldsymbol{a}, s, \boldsymbol{b}, \boldsymbol{z}>$, the longest common subsequence of A and B is $\langle\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{z}\rangle$.

Longest-Common-Subsequence Problem

- Let $F[i, j]$ denote the length of the longest common subsequence of the first i elements of A and the first j elements of B. The objective of the LCS problem is to find $F[n, m]$.
- We can write:

$$
F[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ F[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max \{F[i, j-1], F[i-1, j]\} & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

Longest-Common-Subsequence Problem

- The algorithm computes the two-dimensional \boldsymbol{F} table in a row- or column-major fashion. The complexity is $\theta(n m)$.
- Treating nodes along a diagonal as belonging to one level, each node depends on two subproblems at the preceding level and one subproblem two levels prior.
- This DP formulation is nonserial monadic.

Longest-Common-Subsequence Problem

(a) Computing entries of table for the longest-commonsubsequence problem. Computation proceeds along the dotted diagonal lines. (b) Mapping elements of the table to processing elements.

Longest-Common-Subsequence: Example

- Consider the LCS of two amino-acid sequences HEXGAWG HEE and P A W H EAE. For the interested reader, the names of the corresponding amino-acids are \bar{A} : Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: Proline, and W: Tryptophan.

- The F table for computing the LCS of the sequences. The LCS is A W H E E.

Parallel Longest-Common-Subsequence

- Table entries are computed in a diagonal sweep from the top-left to the bottom-right corner.
- Using n processors in a PRAM, each entry in a diagonal can be computed in constant time.
- For two sequences of length n, there are 2n-1 diagonals.
- The parallel run time is $\boldsymbol{\theta}(\boldsymbol{n})$ and the algorithm is costoptimal.

Parallel Longest-Common-Subsequence

- Consider a (logical) linear array of processors. Processing element P_{i} is responsible for the $(i+1)^{\text {th }}$ column of the table.
- To compute $F[i, j]$, processing element P_{j-1} may need either $F[i-1, j-1]$ or $F[i, j-1]$ from the processing element to its left. This communication takes time $t_{s}+t_{w}$.
- The computation takes constant time $\left(t_{c}\right)$.
- We have:

$$
T_{P}=(2 n-1)\left(t_{s}+t_{w}+t_{c}\right)
$$

- Note that this formulation is cost-optimal, however, its efficiency is upper-bounded by 0.5 !

Serial Polyadic DP Formulation: Floyd's AllPairs Shortest Path

- Given weighted graph $G(V, E)$, Floyd's algorithm determines the cost $d_{i, j}$ of the shortest path between each pair of nodes in V.
- Let $\boldsymbol{d}_{i, j, j}^{k}$ be the minimum cost of a path from node i to node j, using only nodes $v_{0}, v_{1}, \ldots, v_{k-1}$.
- We have:

$$
d_{i, j}^{k}= \begin{cases}c_{i, j} & k=0 \\ \min \left\{d_{i, j}^{k-1},\left(d_{i, k}^{k-1}+d_{k, j}^{k-1}\right)\right\} & 0 \leq k \leq n-1\end{cases}
$$

- Each iteration requires time $\Theta\left(n^{2}\right)$ and the overall run time of the sequential algorithm is $\boldsymbol{\theta}\left(n^{3}\right)$.

Serial Polyadic DP Formulation: Floyd's AllPairs Shortest Path

- A PRAM formulation of this algorithm uses \boldsymbol{n}^{2} processors in a logical 2D mesh. Processor $P_{i, j}$ computes the value of $d_{i, j}^{k}$ for $k=1,2, \ldots, n$ in constant time.
- The parallel runtime is $\Theta(n)$ and it is cost-optimal.

Nonserial Polyadic DP Formulation: Optimal MatrixParenthesization Problem

- When multiplying a sequence of matrices, the order of multiplication significantly impacts operation count.
- Let $C[i, j]$ be the optimal cost of multiplying the matrices $A_{j}, \ldots A_{j}$
- The chain of matrices can be expressed as a product of two smaller chains:

$$
A_{i}, A_{i+1}, \ldots, A_{k} \quad \text { and } \quad A_{k+1}, \ldots, A_{j} .
$$

- The chain $A_{i j} A_{i+1}, \ldots, A_{k}$ results in a matrix of dimensions $r_{i-1} \times r_{k}$, and the chain A_{k+1}, \ldots, A_{j} results in a matrix of dimensions $r_{k} \times r_{j}$.
- The cost of multiplying these two matrices is $r_{i-1} r_{k} r_{j}$.

Optimal Matrix-Parenthesization Problem - Example

- Consider three matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$, and \mathbf{A}_{3} of dimensions $10 \times 20,20 \times 30$, and 30×40, respectively.
- The product of these matrices can be computed as $\left(A_{1} \times A_{2}\right) \times A_{3}$ or as $A_{1} \times\left(A_{2} \times A_{3}\right)$.
- In ($A_{1} \times A 2$) $\times \mathrm{A} 3$, computing $\left(\mathbf{A}_{1} \times \mathrm{A}_{2}\right)$ requires $\mathbf{1 0 \cdot 2 0 \cdot 3 0}$ operations and yields a matrix of dimensions 10.30 . Multiplying this by A_{3} requires $10 \cdot 30 \cdot 40$ additional operations. Therefore the total number of operations is $10 \cdot 20 \cdot 30+10 \cdot 30 \cdot 40=18000$.
- Similarly, computing $\mathbf{A}_{1} \mathbf{x}\left(\mathbf{A}_{2} \mathbf{x} \mathbf{A}_{3}\right)$ requires $20 \cdot 30 \cdot 40+$ $10 \cdot 20 \cdot 40=32000$ operations.
- The first parenthesization is desirable.

Optimal Matrix-Parenthesization Problem

- We have:

$$
C[i, j]= \begin{cases}\min _{i \leq k<j}\left\{C[i, k]+C[k+1, j]+r_{i-1} r_{k} r_{j}\right\} & 1 \leq i<j \leq n \\ 0 & j=i, 0<i \leq n\end{cases}
$$

Optimal Matrix-Parenthesization Problem

A nonserial polyadic DP formulation for finding an optimal matrix parenthesization for a chain of four matrices. A square node represents the optimal cost of multiplying a matrix chain. A circle node represents a possible parenthesization.

Optimal Matrix-Parenthesization Problem

- The goal of finding $\mathbf{C}[1, n]$ is accomplished in a bottomup fashion.
- Visualize this by thinking of filling in the \boldsymbol{C} table diagonally. Entries in diagonal / corresponds to the cost of multiplying matrix chains of length $1+1$.
- The value of $C[i, j]$ is computed as $\min \{C[i, k]+C[k+1, j]$ $+r_{i-1} r_{k} r_{j}$, where k can take values from i to $j-1$.
- Computing $C[i, j]$ requires that we evaluate ($j-i$) terms and select their minimum.
- The computation of each term takes time t_{c}, and the computation of $C[i, j]$ takes time $(j-i) t_{c}$. Each entry in diagonal I can be computed in time ${ }_{c}{ }_{c}$.

Optimal Matrix-Parenthesization Problem

- The algorithm computes ($\boldsymbol{n}-\mathbf{1}$) chains of length two. This takes time $(n-1) t_{c}$; computing \boldsymbol{n}-2 chains of length three takes time $(n-2) 2 t_{c}$. In the final step, the algorithm computes one chain of length n in time $1(n-1) t_{c}$.
- It follows that the serial time is $\boldsymbol{\theta}\left(n^{3}\right)$.

Optimal Matrix-Parenthesization Problem

The diagonal order of computation for the optimal matrixparenthesization problem.

Parallel Optimal Matrix-Parenthesization
 Problem

- Consider a logical ring of processors. In step I, each processor computes a single element belonging to the ${ }^{\text {th }}$ diagonal.
- On computing the assigned value of the element in table C, each processor sends its value to all other processors using an all-to-all broadcast.
- The next value can then be computed locally.
- The total time required to compute the entries along diagonal / is $/ t_{c}+t_{s} \log n+t_{w}(n-1)$.
- The corresponding parallel time is given by:

$$
\begin{aligned}
T_{P} & =\sum_{l=1}^{n-1}\left(l t_{c}+t_{s} \log n+t_{w}(n-1)\right) \\
& =\frac{(n-1)(n)}{2} t_{c}+t_{s}(n-1) \log n+t_{w}(n-1)^{2}
\end{aligned}
$$

