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1st routing bit

2nd routing bit

3rd routing bit

4th routing bit

5th routing bit

Tree height <=  no of routing bits = length of bit representation of keys

Keys are represented as a sequence of bits.
Keys are stored in roots only, inner nodes serve as routers only.
Inner node in depth d defines path to the leaf with key K according to the d-th bit 
of  K .

Key must not be a prefix of another key in terms of bit representation.
This can be achieved by representations having all same length in bits. 

Binary trie Description 1
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Inserting single key may result in creating more internal nodes. Insert I [01001] .

I 01001

Binary trie Description 2
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In further examples we omit 0/1 edge labels as the labeling scheme is obvious.

A 00001 A 00001 S 10011

A 00001

S 10011

E 00101

A 00001 E 00101

R 10010 S 10011

A SEARCHING EXAMPLE 
(in shrtcomm):

A SERCHING XMPL

Example of trie building. 

Binary trie Example 3

Insert   A [00001]
Insert   S [10011]
Insert   E [00101]
Insert   R [10010]
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A 00001

R 10010 S 10011

C 00011
E 00101

A 00001

R 10010 S 10011

C 00011
E 00101

H 01000

Binary trie Example 4

Insert   C [00011]

Insert   H [01000]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14



Insert   I [01001]

A 00001
R 10010 S 10011

C 00011
E 00101

I 01001H 01000

Binary trie Example 5
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A 00001

R 10010 S 10011

C 00011
E 00101

H 01000

Example of multiple node splitting in one insert operation.



Insert  G [00111]

N 01110
A 00001

R 10010 S 10011
C 00011

I 01001H 01000
G 00111E 00101

Binary trie Example 6
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Insert  N [01110]

N 01110
A 00001

R 10010 S 10011
C 00011

E 00101

I 01001H 01000



A 00001 E 00101

R 10010 S 10011

Null pointers in internal nodes are called null links. When trie has no null link it is a 
complete perfectly balanced binary tree containing 2d+11 nodes and 2d leaves.

Binary trie Null links 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14



The function searchR uses the bits of the key to control the branching on the 
way down the trie.

There are three possible outcomes: 
If the search reaches a leaf (with both links null), then that is the unique node in 
the trie that could contain the record with key v, so we test whether that node
1. indeed contains v (search hit) or 
2. some key whose leading bits match v (search miss). 
If the search reaches a null link, then the parent's other link must not be null, so 
3. there is some other key in the trie that differs from the search key in the 
corresponding bit, and we have a search miss. 

The following code assumes that the keys are distinct, and (if the keys may be of 
different lengths) that no key is a prefix of another. The item member is not used 
in non-leaf nodes.

Binary trie Search Description 8
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private:
Item searchR(link h, Key v, int d)

{ if (h == 0) return nullItem;
if (h->l == 0 && h->r == 0)

{ Key w = h->item.key();
return (v == w) ? h->item : nullItem; }

if (digit(v, d) == 0)
return searchR(h->l, v, d+1);

else return searchR(h->r, v, d+1);
}

public:
Item search(Key v)

{ return searchR(head, v, 0); }

Binary trie Search Code 9
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To insert a new node into a trie, we search as usual, then distinguish the two 
cases that can occur for a search miss.

1. If the miss was not on a leaf, then we replace the null link that caused us to 
detect the miss with a link to a new node, as usual.

2. If the miss was on a leaf, then we use a function split to make one new 
internal node for each bit position where the search key and the key found 
agree, finishing with one internal node for the leftmost bit position where the keys 
differ. 

The switch statement in split converts the two bits that it is testing into a number 
to handle the four possible cases. 
If the bits are the same (case 002 = 0 or 112 = 3), then we continue splitting; if the 
bits are different (case 012 = 1 or 102 = 2), then we stop splitting.

Binary trie Insert Description 10
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private:
link split(link p, link q, int d)
{ link t = new node(nullItem); t->N = 2;
Key v = p->item.key(); Key w = q->item.key();
switch (digit(v, d)*2 + digit(w, d))
{ case 0: t->l = split(p, q, d+1); break;
case 1: t->l = p; t->r = q; break;
case 2: t->r = p; t->l = q; break;
case 3: t->r = split(p, q, d+1); break;

}
return t;

}
void insertR(link& h, Item x, int d)
{ if (h == 0) { h = new node(x); return; }
if (h->l == 0 && h->r == 0)
{ h = split (new node(x), h, d); return; }

if (digit(x.key(), d) == 0)
insertR(h->l, x, d+1);

else insertR(h->r, x, d+1);
}

public: void insert(Item item) { insertR(head, item, 0); }

Binary trie Insert Code 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14



0

1

I 01001H 01000

0
0

10

Binary trie One-way branching 12
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The result of inserting the keys H = 01000 and I = 01001 into an initially empty 
binary trie. The path length is long even with only two keys in the trie.

H 01000

An annoying feature of tries, and another one that distinguishes them from the 
other types of search trees that we have seen, is the one-way branching required 
when keys have bits in common. For example, keys that differ in only the final bit 
always require a path whose length is equal to the key length, no matter how 
many keys there are in the tree, as illustrated below.
The number of internal nodes can be somewhat larger than the number of keys.

One-way branching



The trie, which part is schematically presented here, built by inserting about 200 
random keys, is well-balanced, but has 44 percent more nodes than might 
otherwise be necessary, because of one-way branching. 

Binary trie shape Realistic example 13
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The structure of a trie is independent of the key insertion order: There is a unique 
trie for any given set of distinct keys.

Insertion or search for a random key in a trie built from N random (distinct) 
bitstrings requires about lg N bit comparisons on the average. The worst-case 
number of bit comparisons is bounded only by the number of bits in the search 
key.

A trie built from N random w-bit keys has about N/ ln(2)  1.44 N nodes on the 
average.

Operation Delete is  complementary  to Insert operation. 
Its algorithm/implementation is left to the reader. [Sedgewick]

Binary trie properties Summary 14
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Patricia trie 15

Donal R. Morrison: PATRICIA—Practical Algorithm To Retrieve Information Coded in 
Alphanumeric, Journal of the ACM,  Volume 15 Issue 4, Oct. 1968, pp 514-534.
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Trie built by inserting about 200 random keys 

Patricia trie built by inserting about 200 random keys 

Compare how well are both trees balanced 

Patricia trie vs. trie Example comparison 16
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Starting with the standard trie data structure, we avoid one-way branching via a 
simple device: we put into each node the index of the bit to be tested to decide 
which path to take out of that node. 
Thus, we jump directly to the bit where a significant decision is to be made, 
bypassing the bit comparisons at nodes where all the keys in the subtree have 
the same bit value. 
Moreover, we avoid external nodes via another simple device: we store data in 
internal nodes and replace links to external nodes with links that point back 
upwards to the correct internal node in the trie. 

These two changes allow us to represent tries with binary trees comprising 
nodes with a key and two links (and an additional field for the index), which we 
call patricia tries. With patricia tries, we store keys in nodes as with tries, and we 
traverse the tree according to the bits of the search key, but we do not use the 
keys in the nodes on the way down the tree to control the search; we merely 
store them there for possible later reference, when the bottom of the tree is 
reached.

Patricia trie Structure 17
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private:
void showR(link h, ostream& os, int d)
{
if (h->bit <= d) { h->item.show(os); return; }
showR(h->l, os, h->bit);
showR(h->r, os, h->bit);

}
public:
void show(ostream& os)
{ showR(head->l, os, -1); }

Patricia trie Sort Traversal 18
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This recursive procedure shows the records in a patricia trie in order of their keys. 
We imagine the items to be in (virtual) external nodes, which we can identify by 
testing when the bit index on the current node is not larger than the bit index on its 
parent. Otherwise, this program is a standard inorder traversal.



A 00001

C 00011

S 10011

E 00101

H 01000

In a successful search for R = 10010 in this sample patricia trie (top), we move right 
(since bit 0 is 1), then left (since bit 4 is 0), which brings us to R (the only key in the 
tree that begins with 1***0). On the way down the tree, we check only the key bits 
indicated in the numbers over the nodes (and ignore the keys in the nodes). When 
we first reach a link that points up the tree, we compare the search key against the 
key in the node pointed to by the up link, since that is the only key in the tree that 
could be equal to the search key.

In an unsuccessful search for I = 01001, we move left at the root (since bit 0 of the 
key is 0), then take the right (up) link (since bit 1 is 1) and find that H (the only key 
in the trie that begins with 01) is not equal to I.

R 10010

Patricia trie Search Example 19
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The Search method differs from trie search in three ways: 
- there are no explicit null links, 
- we test the indicated bit in the key instead of the next bit, 
- and we end with a search key comparison at the point where we follow a link 

up the tree. 
It is easy to test whether a link points up, because the bit indices in the nodes 
(by definition) increase as we travel down the tree. 
To search, we start at the root and proceed down the tree, using the bit index in 
each node to tell us which bit to examine in the search key—we go right if that bit 
is 1, left if it is 0. The keys in the nodes are not examined at all on the way down 
the tree. Eventually, an upward link is encountered: each upward link points to 
the unique key in the tree that has the bits that would cause a search to take that 
link. Thus, if the key at the node pointed to by the first upward link encountered 
is equal to the search key, then the search is successful; otherwise, it is 
unsuccessful.

Patricia trie Search Description 20
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private:
Item searchR(link h, Key v, int d) {

if (h->bit <= d) return h->item; // upward link, stop
if (digit(v, h->bit) == 0)

return searchR(h->l, v, h->bit);
else return searchR(h->r, v, h->bit);
}

public:
Item search(Key v)
{ Item t = searchR(head, v, -1);
return (v == t.key()) ? t : nullItem;

}

Patricia trie Search Code 21
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The recursive function searchR returns the unique node that could contain the 
record with key v. It travels down the trie, using the bits of the tree to control the 
search, but tests only 1 bit per node encountered—the one indicated in the bit 
field. It terminates the search when it encounters an external link, one which 
points up the tree. The public function search calls searchR, then tests the key in 
that node to determine whether the search is a hit or a miss.



private: Item searchR(link h, Key v, int d) {
if (h->bit <= d) return h->item;
if (digit(v, h->bit) == 0)

return searchR(h->l, v, h->bit);
else return searchR(h->r, v, h->bit); }

public: Item search(Key v)
{ Item t = searchR(head, v, -1);
return (v == t.key()) ? t : nullItem; }

Patricia trie Search Compared with trie 22
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private: Item searchR(link h, Key v, int d)
{ if (h == 0) return nullItem;
if (h->l == 0 && h->r == 0)
{ Key w = h->item.key();

return (v == w) ? h->item : nullItem; }
if (digit(v, d) == 0)

return searchR(h->l, v, d+1);
else return searchR(h->r, v, d+1); }

public: Item search(Key v)
{ return searchR(head, v, 0); }

Trie search 

Patricia search 



A 00001

C 00011

S 10011

E 00101
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I 01001

H 01000

4

4

3

2

1

0

4

To insert a key into a patricia trie, we begin with a search. The function searchR 
gets us to a unique key in the tree that must be distinguished from the key to be 
inserted. We determine the leftmost bit position at which this key and the search 
key differ, then use the recursive function insertR to travel down the tree and to 
insert a new node containing v at that point.

In insertR, there are two cases.
1. The new node could replace an internal link (if the search key differs from the 
key found in a bit position that was skipped), or 
2. an external link (if the bit that distinguishes the search key from the found key 
was not needed to distinguish the found key from all the other keys in the trie).

Patricia trie Insert Description 23
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A 00001

C 00011

S 10011

E 00101

R 10010

I 01001
H 01000

To insert I into the sample patricia trie, we add a new node to check bit 4, since 
H = 01000 and I = 01001 differ in only that bit (top). On a subsequent search in the 
trie that comes to the new node, we want to check H (left link) if bit 4 of the search 
key is 0; if the bit is 1 (right link), the key to check is I.

Patricia trie Insert Example I 24
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A 00001

C 00011

S 10011

E 00101

R 10010

I 01001

H 01000

To insert N = 01110, we add a new node in between H and I to check bit 2, since 
that bit distinguishes N from H and I.

N 01110

Patricia trie Insert Example II 25
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The implementation of insertion for patricia tries mirrors the two cases that arise 
in insertion for tries, as illustrated in previous example. 
As usual, we gain information on where a new key belongs from a search miss. 

For tries, the miss can occur 
either because of a null link 
or because of a key mismatch at a leaf. 

For patricia tries, we need to do more work to decide which type of insertion is 
needed, because we skipped the bits corresponding to one-way branching during 
the search. 
A patricia-trie search always ends with a key comparison, and this key carries the 
information that we need. 

Patricia trie Insert Description 26
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We find the leftmost bit position where the search key and the key that terminated 
the search differ, then search through the trie again, comparing that bit position 
against the bit positions in the nodes on the search path. 
If we come to a node that specifies a bit position higher than the bit position that 
distinguishes the key sought and the key found, then we know that we skipped a 
bit in the patricia-trie search that would have led to a null link in the corresponding 
trie search, so we add a new node for testing that bit. 
If we never come to a node that specifies a bit position higher than the one that 
distinguishes the key sought and the key found, then the patricia-trie search 
corresponds to a trie search ending in a leaf, and we add a new node that 
distinguishes the search key from the key that terminated the search. 

We always add just one node, which references the leftmost bit that distinguishes 
the keys, where standard trie insertion might add multiple nodes with one-way 
branching before reaching that bit. That new node, besides providing the bit-
discrimination that we need, will also be the node that we use to store the new 
item.

Patricia trie Insert Description 27

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14



public:
void insert(Item x)

{ Key v = x.key(); int i;
Key w = searchR(head->l, v, -1).key();
if (v == w) return; // no duplicates
for (i = 0; digit(v, i) == digit(w, i); i++) ;
head->l = insertR(head->l, x, i, head);

}

ST( int maxN)
{ head = new node(nullItem);

head->l = head->r = head; }

Patricia trie Insert Code 28
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private:
link insertR(link h, Item x, int d, link p)
{ Key v = x.key();
if ((h->bit >= d) || (h->bit <= p->bit))
{
link t = new node(x); t->bit = d;
t->l = (digit(v, t->bit) ? h : t);
t->r = (digit(v, t->bit) ? t : h);
return t;

}
if (digit(v, h->bit) == 0)

h->l = insertR(h->l, x, d, h);
else h->r = insertR(h->r, x, d, h);
return h; 

}

Patricia trie Insert Code 29
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The search cost in a standard trie typically does depend on the length of the 
keys—the first bit position that differs in two given keys could be arbitrarily far into 
the key.

All the comparison-based search methods that we have considered so far also 
depend on the key length—if two keys differ in only their rightmost bit, then 
comparing them requires time proportional to their length.

Hashing methods always require time proportional to the key length for a search, 
to compute the hash function. But patricia immediately takes us to the bits that 
matter, and typically involves testing less than lg N of them. This effect makes 
patricia (or trie search with one-way branching removed) the search method of 
choice when the search keys are long.

For example, suppose that we have to search among millions of 1000-bit keys. 
Then patricia would require accessing only about 20 bytes of the search key for 
the search, plus one 125-byte equality comparison, whereas hashing would 
require accessing all 125 bytes of the search key to compute the hash function, 
plus a few equality comparisons, and comparison-based methods would require 
20 to 30 full key comparisons. 

Patricia trie Effectivity, conclusion 30
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