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Mobile robot locomotion and kinematics principles   
 
Robot trajectory control  
 
Introduction & terms: 
 
Robot actuators: Technical tools to physically influence environment (in general)   

Specifically for mobile robots: Specialized systems allowing replacement of the robot in  
                  the environment   

 
Technical solutions to mobility enabling systems:  

•  Wheeled traction (steered or skid-controlled)  
•  Tracked  systems (always skid-control)  
•  Omnidirectional wheels (skid systems) 
•  Legged/walking systems (statically and dynamically stable)  
•  Aerial systems (hovers, gliders, multi-copters) 
•  Underwater vehicles  

 
 
 
 
 
 



Intelligent and Mobile Robotics group               Czech Institute of Informatics, Robotics and Cybernetics 
                         Czech Technical University in Prague 

 

Featuring of locomotion systems 
•  Underwater vehicles (AUV) 

–  Commonly constrained locomotion control and limitation on maneuvrability:  
Minimal forward speed assurance (gliders), braking and accelerations, curvature controls – for 
drifting and gliding systems 

•  Aerial systems (UAV) 
–  Similar constrains on control and maneuvrability as underwater systems 
–  Problem of static stabilization of the system (i.e. hovering multi-copter appears in principle 

unstable) brings control engineering problems 
–  Power/fuel consumption also at wait-states (hovering, gliding)  

•  Walking/legged systems 
–  High terrain throughput (advantage)  
–  High complexity of locomotion control, many joints, drives and DOFs  
–  Problem of the general robot body stabilization (to allow efficient sensing) 
–  Problem of static/dynamic stabilization of the robot body (i.e. mono-peds, bi-peds, etc.). 
–  Walking/legged systems bring up very complex and hard control problems! 
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•  Wheeled and tracked systems 
–  Purely wheeled systems (with a heading-steering system)  
–  Tracked systems and systems with hard-coupled wheels (the both are skid-controlled)   
–  Omnidirectional wheels (Mecanum wheels)  

 

Kinematic construction of robot basic locomotion systems – types: 

•  Diferential drive 
•  Ackermann control  
•  Car-like 
•  Synchronous drive 
•  Omnidirectional wheels  
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Purely wheeled systems and the slip  
Modes of pure rotational motion vs. wheel slip:  
Lemma: To assure pure wheel rotation, an instantaneous center of curvature (ICC) should 
exist, i.e. all the wheels on the robots’ undercarriage in rotation should drive along the same 
curvature. 

 
 
 
 
 
 
 
               Rotation and slip                                   Rotation only 
 
 
Remark 1: Holds only for ideally thin wheels, width -> 0 
Remark 2: Other cases exhibiting skid are hard to be described by analytic tools  
 
 
 
 
 

ICC 
Instantaneous 
Center of 
Curvature 
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Diferential drive 
Principal setup 
 

 
 
 
 
 
 
 
 

 

 
 

ICC = x − RsinΘ, y + RcosΘ⎡⎣ ⎤⎦ Coordinates of Instantaneous Center of Curvature 

vr =ω R+ l 2( )

vl =ω R− l 2( )R =
l vl + vr( )
2 vl − vr( )

ω =
vr − vl
l

Forward velocities for 
each of the wheels 

Radius of the curvature 

Angular speed along the 
curvature 

ICC 
vl 

vr 

[x,y] 
R x 

y 

θ 

ω 

l/2 



Intelligent and Mobile Robotics group               Czech Institute of Informatics, Robotics and Cybernetics 
                         Czech Technical University in Prague 

Generalized kinematics equation - holds for any type of drive 
Principal setup 
 

 
 
 
 
 
 
 
 

 

 
 

x t( ) = v t( )
0

t

∫ .cos θ t( )( )dt

By integrating the afore 
we obtain:  

Where v and θ stand for the forward 
velocity, resp. the curvature angle 
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y t( ) = v t( )
0

t

∫ .sin θ t( )( )dt θ t( ) = ω t( )
0

t

∫ dt

Differentiates the driving angle as 

 ωδt ≈ δθ

θ 

v 

What implies:  
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Substituting the basic kinematic equation, also holds: 

 

 

 

 

 

 

 

 

 

 

 

 

  

x t( ) = 12 vr t( )+ vl t( )( )
0

t

∫ .cos θ t( )( )dt

y t( ) = 12 vr t( )+ vl t( )( )
0

t

∫ .sin θ t( )( )dt

θ t( ) = 1l vr t( )− vl t( )
0

t

∫ dt
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Ackermann drive (tricycle structure) 
Principal setup 
 

 
 
 
 
 
 
 
 

 

 
 

ICC = x − RsinΘ, y + RcosΘ⎡⎣ ⎤⎦ where                          for the center of curvature 

vr =ω R+ l 2( )

vl =ω R− l 2( )R =
l vl + vr( )
2 vr − vl( )

ω =
vr − vl
l

Forward velocities of 
each of the wheels 
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R = d
tanϕ
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…and can also be substituted into 
kinematic equations as afore... 
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Special construction drives I 
Synchronous drive 

 

 

 

 

 

XR400 drive 

 

 

 

 

 

v(t) 

ω(t) 

ICC 

vi(t) 

ωi(t) 

Where for both the drives 
stands: 

 x t( ) = v t( )
0

t

∫ .cos θ t( )( )dt

y t( ) = v t( )
0

t

∫ .sin θ t( )( )dt

θ t( ) = ω t( )
0

t

∫ dt

Motion in resulting direction of 
forces imposed by v(t) and 
ω(t) 

Where for both the drives 
stands: 
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R 

v 

Special construction drives II 
Omnidirectional (mecanum) wheels 

 

 

 

 

 

 

 

 

 

 

vx 

ω 

Where:  
vy – forward velocity  
vx – forward velocity  
vθ – forward velocity  
 
Example of performance at:  
https://www.youtube.com/watch?v=TXTo16KKm8Q 
 

vy =
1
4
v0 + v1 + v2 + v3( )

Each of the sub-
wheels performs 
distribution of forces 
(velocities) as in the 
figure. 

vx =
1
4
v0 − v1 + v2 − v3( )

vθ =
1
4
v0 + v1 − v2 − v3( )

verror =
1
4
v0 − v1 − v2 + v3( )

vy 

vx = R.ω.sinϕ
vy = R.ω.cosϕ

Robot undercarriage  
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Holonomic vs. non-holonomic systems, constrains 
•  Lets’ have a system description in generalized coordinate system            , where      stands 

for robot state space (configuration space, C-space) 

•  Given the robot trajectory q(t), the vector of the system velocity stands  

•  The system in state    under controls            from the control space holds the fuction: 
                            denoting the space of generalized coordinates, so that the fundamental 
kinematic equation can be rewritten as: 
 
An example:  A plotter without dynamics, input controls are ux, uy 

 

 

                                                                                                    ☐	

•  Realistic systems always exhibit some kinematic constrains of the generalized coordinate 
system (i.e. do not allow attaining certain values of these coordinates); these constrains 
can be defined for i=1..k, for all k<n, where n stands for the system dimension as:   
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•  The kinematic constrains may also be rewritten into form:                   , for all i=1..k, k<n  

•  If the kinematic constrain can be integrated; the system is holonomic.  

•  If all the kinematic constraining conditions are holonomic, the whole system stands 
also holonomic. 

An example:  

Yet simple constraint for the previous plotter system can be:                        ; integrating this 
constraint (along dxdy) delivers:                      , which denotes circular trajectories only. ☐	

	

Consequeces of holonomy 
•  Holonomic constrains limit the state-space of the robot; i.e. the robot can not execute all 

types of locomotions, but only such, which comply with the given constraints (this is 
sometimes also entitled as “geometric constrains”) 

•  Major advantage of holonomic systems is, that control synthesis can be obtained by 
making use of general approaches (i.e. deriving unambiguous controls for execution of 
trajectory A->B) 

•  Non-holonomic systems are hardly controllable; no unified approach for control synthesis 
(can not be made asymptotically stable) – the task is mainly resolved via ”strategy 
switching”                                                       

  

2x!x + 2y!y = 0

ai .
!q.!"q = 0

x2 + y2 = c2


