
Version Control Systems

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 14

B0B36PRP – Procedurální programování

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 1 / 47

Overview of the Lecture

Part 1 – Version Control Systems

Introduction and Terminology

Version Control Systems

SVN - Subversion

Git

Versioning

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 2 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Part I

Part 1 – Version Control Systems (VCSs)

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 3 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

What is Version Control?

Working on a project or an
assignment, we can tend to
“backup” our early achievements
mostly “just for sure”

hw01
hw01.backup
hw01.old
hw01.old2
hw01.old3

We may try a new approach, e.g., for optional assignment, but we
would like to preserve the previous (working) approach
We may also want to backup the files to avoid file/work lost in a
case of hard/solid drive failure We need to save it to a reliable medium

Finally, we need a way how to distribute and communicate our
changes to other members of the team

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 5 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Version Control System

Version Control System (VCS) is a tool or set of tools that
provides management of changes to files over time

Uniquely identified changes (what)
Time stamps of the changes (when)
Author of the changes (who)

VCS can be
Manual (by hand) e.g., “save as”

Creating multiple copies of files and changes documented in an
annotation
Backups of the file systems (e.g., snapshots)
Files shared between team members

Automated version control
System or application manages changes
Version tracking is managed internally by the system or application
It may provide further support for collaboration (team development)

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 6 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Benefits of Version Control System (VCS)

VCS provides numerous benefits for both working environment
(individual and team)
Individual benefits

Backups with tracking changes
Tagging – marking the particular version in time
Branching – multiple versions
Tracking changes
Revert (undo) changes

Team benefits
Working on the same code sources in a team of several developers
Merging concurrent changes
Support for conflicts resolution when the same file (the same part
of the file) has been simultaneously changed by several developers
Determine the author and time of the changes

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 7 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

History Overview

1972 – Source Code Control System (SCCS) UNIX

Store changes using deltas
Keeps multiple versions of a complete directory
Keeps original documents and changes from one version to the next

1982 – Revision Control System (RCS) UNIX

Keeps the current version and applies changes to go back to older
versions
Single file at a time

1986 – Concurrent Versions Systems (CVS)
Start as scripts on top of the RCS
Handle multiple files at a time
Client-Server architecture

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 8 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Revision Control System (RCS) – Commands

Create a directory for storing rcs files, e.g., /etc
co -l file – check out a file and lock it

Locking by means the file can be checked back in

ci file – check in a revision (put the file under rcs control)
rcs -l file – lock a file already checked out
rcsdiff files – report on differences between files
merge files – merge two files into an original file

The results has to be checked, it is not a magic!

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 9 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Revision Control System (RCS) – Example
1 $ mkdir work
2 $ cd work
3 $ vim main.sh
4 $ mkdir RCS
5 $ ci -u main.sh
6 RCS/main.sh,v <-- main.sh
7 enter description, terminated with single ’.’ or end of file:
8 NOTE: This is NOT the log message!
9 >> My main script

10 >> ^D
11 initial revision: 1.1
12 done
13 $ ls RCS
14 main.sh,v
15 $ echo "echo ’My script’" >> main.sh
16
17 $ rcsdiff main.sh
18 ===
19 RCS file: RCS/main.sh,v
20 retrieving revision 1.1
21 diff -r1.1 main.sh
22 1a2
23 > My script
24
25 $ci -u main.sh
26 RCS/main.sh,v <-- main.sh
27 new revision: 1.2; previous revision: 1.1
28 enter log message, terminated with single ’.’ or end of file:
29 >> Add the debug message.
30 >> .
31 done

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 10 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Terminology – VCS Vocabulary

Repository – the database storing the files and deltas
Working (Local) copy of the versioned files

An user works with a copy of the versioned files to modify them
We can further distinguish local and working copy of the repository (versioned files) for particular VCS.
E.g., subversion in addition to working copy also keeps local copy of the files in the .svn directory with
the version of the files the developer is currently working on. Git keeps a local copy of the repository in
the .git directory

Trunk – The primary location for the particular project files in the
repository
Branch – A secondary code location (for a variant of the project)
Revision – A version of the a file (or repository)
Commit – Storing a bunch of changes to the repository
Revert – Roll back a commit from the repository
Merge – Pulling changes from one branch into another
Conflict – When a file cannot be merged cleanly (automagicaly)

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 11 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Repository and Version Control

Version Control System (VCS) is a set of tools (commands) for
interaction with the repository and location files (copies of the
versioned files)

Tool is a command or icon or an item in the menu.

Local command or in the case of the repository also a server
service
Repository

All changes are stored in the repository
Usually as deltas, which store differences, and thus save file size

Repository can be remote or local

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 12 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Versioning Files

Local/Working Copy

Repository

Local/Working Copy Local/Working Copy

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 13 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Getting Local/Working Copy – checkout

Create a local copy of the versioned files
from the repository
Directory tree of the local copy usually
contains additional files with the infor-
mation about the versioned files, revi-
sions, and repository, e.g., .git or .svn
Then, by modifying checkouted files, we
modify the local copies of the particular
version of the files

Local/Working Copy

checkout

Repository

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 14 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Adding a File to the Version Control – add
It is necessary to inform the version control system to track partic-
ular files under version control

Without explicit adding files, the VCS does not know which files we
would like to keep under version control and which not.

Local/Working Copy

Repository

add

???

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 15 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Confirm Changes to the Repository – commit

Request to accept the local modifica-
tions as a new revision of the files
Version control system creates the clos-
est higher version, e.g., with the revision
number about one higher
For the case there is not a newer revision
in the repository (according to the local
copy of the repository modified locally),
changes are propagated to the reposi-
tory; Otherwise:

Update the locally copy of the ver-
sioned files to the newer version from
the repository
If mergers are not handled automagi-
cally, it is necessary to handle conflicts

Local/Working Copy

commit

Repository

Notice, each commit should be commented by a meaningful, clear,
and not obvious comment.

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 16 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Update the Local Version of the Files from the Repository -
update

Update the current local copy of the
versioned files from the repository to a
newer (or specified) revision from the
repository
If changes of the versioned files is com-
patible with local modifications, files are
automagically merged
Otherwise it is necessary to manage the
conflicts and select the correct version
manually

Repository

update

Local/Working Copy

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 17 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Resolving Conflicts

Version Control System (VCS) does not prevent the conflicts,
but it provides tools for resolving the conflicts
Conflict is usually caused by simultaneous modification of the same
part in the source file
Conflicts can be avoided by suitable structure of the source files,
using modules, and the overall organization of the project files and
team work
Conflicts can be further avoided by specifying access rights to par-
ticular files and developers (authorization)

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 18 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Example of the Merge File with Marked Conflict
Conflict – incompatible changes of the same lines
1169 fprintf(stdout, "%d [%.3lf, %.3lf]\n", i,
1170 }
1171 <<<<<<< vis.cpp
1172 G=12*cities.number;
1173 //G=12.41*4+0.06;
1174 =======
1175 G=12.41*cities.number+0.06;
1176 >>>>>>> 1.12.2.48
1177 separate = false;
1178 return 0;
1179 }
1180
1181 /// ––-
1182 int CMap::coords_size(double * min_x, double * m
1183 {

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 19 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Visualization of Differences

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 20 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Tagging – Point in Time Marking

VCS keeps the history of the versioned files
We can label the particular state of the repository in the time by a
tag, e.g., Release_1.0
Tag – is a symbolic name for a particular version (state) of the
repository
HEAD tag is usually used for the current version of the repository

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 21 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Branching and Branch Names

Allows to work in parallel on different ideas / streams /
implementations, e.g. for

Incremental update to newer techniques and technologies
Testing and evaluation of novel approaches before including them
into the main product branch

There are common branch names:
CURRENT, TRUNK - the main development branch
STABLE - stable development branch

Commit into to the STABLE branch should not disrupt the activities
of other developers. E.g., Before merging into the STABLE branch,
all changes in API should be propagate to other parts.

Using many branches for the development, branch merge may
be the crucial property of the version control system

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 22 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Example of Branches

initial import PRE−RELEASE

1.0.2 1.0.2

RELEASE_1.0

1.0.3 1.0.4 2.0.5

1.0.2

DEVELOP

1.0.2.2 1.0.3.2

HEAD

1.0.4.2

1.0.3.2 1.0.3.3

1.0.11.0.0

STABLE
TRUNK

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 23 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Centralized vs. Distributed

Centralized
Single repository

Precisely specified source of
record Straightforward authorization

Single point of failure

Version ids are usually sequen-
tial numbers

Easy to remember and referenced

Revision number can be the whole repository

If repository on the server, it
may require network
Generally less use of branching
for experimentation

Distributed
Every user has a full copy of the
repository Complicated authorization

Redundant copies, more robust to failures

May require unnecessary data space for huge reposi-
tories

Offline work usually possible
Commit to local repository

Version ides are usually a GUID
(Globally Unique IDentifier)
More branching and sharing

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 25 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Example of VCS

Sometimes may also be called as Source Code Manager (SCM)
Many VCSs exist as both free/open source and proprietary

https://en.wikipedia.org/wiki/List_of_version_control_software

Local only: SCCS (1972), RCS (1982), PVCS1 (1985), QVCS1 (1991)

Client-server: CVS (1986), ClearCase1 (1992), Perforce1 (1995), Subversion (2000),

Surround SCM1 (2002), Visual Studio Team Services1 (2014)

Distributed: BitKeeper (1998), Darcs (2002), SVK (2003), Bazaar (2005), Mer-

curial (2005), Git (2005), Plastic SCM1 (2006), Visual Studio Team Services (2014)1

1ProprietaryFree/open-source – Subversion, Git
Proprietary – Surround SCM, Plastic SCM

http://www.seapine.com/surround-scm/overview, https://www.plasticscm.com

It is good to known and be aware what systems are available and what are their
limitations and features. Knowledge of fundamental principles may help you to
make a right choice.

https://en.wikipedia.org/wiki/Comparison_of_version_control_software

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 26 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Subversion and Git – Main Difference
Subversion

Central repository approach – the main repository is the only
source and only the main repository has the complete file history
Users checkout local copies of the current version
It includes authorization to particular directories
It revision id is a number for a whole repository
Tags and branches are directories (cheap-copy)
Allows easy and straightforward multiple versions (branches/tags) alongside

Git
Distributed repository approach – every checkout of the repository
is a full repository with complete history
Greater redundancy with higher speed
Branching and merging repositories is more heavily used

Branches and tags are “markers” of the subset of the repository

What the best fits your needs depends on the way how you expect to use it. It also
holds for single user usage. Imagine a situation with a single main laptop (do not
rely on single HDD/SSD). Or a situation with several workstations and laptops.

Learn what you need!
Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 27 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Literature

For both systems Subversion and Git, there are several books also
available for download or on-line readings

Subversion

http://svnbook.red-bean.com/

Git

https://git-scm.com/book/en/v2

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 28 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Subversion

http://subversion.apache.org
Apache Subversion 1.9.5 Release (2016-11-29)

Milestone 1 - September 2000,
Subversion 0.8 - January 2002,
Subversion 0.37 (1.0.0-RC1) - January 2004,
Subversion 1.0.0 - February 2004,
Subversion 1.1.0 - September 2004,
Subversion 1.2.0 - May 2005,
Subversion 1.3.0 - January 2006,
Subversion 1.4.0 - September 2006,
Subversion 1.5.0 - June 2008,
Subversion 1.6.0 - March 2009
Subversion 1.7.0 - October 2011 (Apache Foundation),
Subversion 1.8.0 - June 2012,
Subversion 1.9.0 - August, 2015

https://subversion.apache.org/docs/release-notes/release-history.html

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 30 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

SVN – Setting up a repo

svnadmin – administration changes to the SVN repository
svn – for interaction with an SVN repository

Can be used from other applications / scripts / GUIs or using particular
library calls.

The repository can be setup

Locally using local path to the repository
svnadmin create /repos/myrepos
svn checkout file:///repos/myrepos my_project

or using ssh account
svn checkout svn+ssh://mypc.cvut.cz/repos/myrepos my_project

As a server services using
ssh
svnserver
http and https – apache2 mod_dav_svn_module.

Authentication via http(s) seesions, e.g., using LDAP
Authorization using svn-auth-file

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 31 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

SVN – Commands 1/2

svn add files – schedule files to be added at the next commit
svn ci [files] - commit / check in changed files
svn co [files] – check out
svn update [files] - update local copy to the latest version

(or specified version using -r)

svn help [command] – get help info about a particular command
svn status [files] – get info about the files
svn info – get info about the local the repository and local copy
svn diff [files] – list of changes of the local working files to
the local copy
svn log [files] – list commit changes

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 32 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

SVN – Commands 2/2

svn revert files – restore working copy to the repo’s version
svn merge source path – merge changes
svn resolve source path – resolve merging conflicts
svn resolved files – mark the files as conflicts resolved

E.g., after manual editing or using other tools

Further commands are, e.g., blame, changelist, mkdir, ls, mv,
lock/unlock, propset, etc.
A file can be removed from the versioning by svn rm files

The previous versions of the file are kept in the repository as a part
of the history
The real deletion of the file is not possible (straightforwardly)

Obliterate feature is planned for Subversion vers. 2.0?
https://subversion.apache.org/roadmap.html

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 33 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Subversion – Example
mkdir ~/svn
% svnadmin create ~/svn/my_project
% svn co file:///$HOME/svn/my_project
Checked out revision 0.
% cd my_project
% vim main.c
% svn add main.c
A main.c

% svn ci -m "Add main program"
Adding main.c
Transmitting file data .done
Committing transaction...
Committed revision 1.

% svn info
Path: .
Working Copy Root Path: /home/jf/my_project
URL: file:///home/jf/svn/my_project
Relative URL: ^/
Repository Root: file:///home/jf/svn/my_project
Repository UUID: 72237e9d-24c5-e611-beef-9c5c8e834429
Revision: 0
Node Kind: directory
Schedule: normal
Last Changed Rev: 0
Last Changed Date: 2016-12-18 14:19:33 +0100 (Sun, 18 Dec 2016)

% svn up
Updating ’.’:
At revision 1.

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 34 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Subversion – Shell and IDE Integration – Examples
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

RapidSVN Nautilus Integration

TortoiseSVN CLion
https://tortoisesvn.net/ExplorerIntegration.html

https://www.jetbrains.com/help/clion/2016.1/quick-start-guide.html
Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 35 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Distributed Version Control System (DVCS)
DVCS does not necessarily have a central repository
Each developer keeps its own local repository
It is usually very often to use branches
The final version of the project is a compilation of particular
branches of individual developers
Beside Git, there are several another systems:

Bazaar – bzr
Monotone - http://monotone.ca.
SVK – based on Subversion http://elixus.org/
Darcs (darcs) – David’s Advanced Revision Control System

http://darcs.net Written in Haskell
Mercurial – http://www.selenic.com/mercurial/wiki
BitKeeper - http://www.bitkeeper.com.
Perforce, Plastic SCM – proprietary software
Git – git – created for developing the Linux kernel
http://git-scm.com

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 37 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Git – Development Process of the Linux Kernel Model with
a Huge Number of Developers

SubSystem

patch patch

Project
SubCoordinator

SubCoordinator

SubCoordinator

SubCoordinator

SubCoordinator

Main Coordinator

Developer

SubSystemSubSystem

SubSystem

SubSystem

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 38 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Git – Properties and Features
Local repository allows versioning without network connection

The central repository is substituted by a responsible developer

Commit only adds the changes to the local repository therefore it
is necessary to propagate the changes to the upstream using git
push
Can be efficient for large projects But it may also not be suitable

Files are stored as objects in a database (INDEX)
SHA1 fingerprints as file identifiers

Low-level operations on top of the database are encapsulated by
more user-friendly interface
Support development a high usage of branches
Support for applying path sets , e.g., delivered by e-mails
Tags and Branches are marked points/states of the repository

Suitability of the Git deployment depends on the project and
model of the development

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 39 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Git – Usage

git clone path to git repository – create a copy of the
repository (in .git directory)
git remote – setup of the repository following (git fetch)
git help command – get help info about a particular command
git add, git status, git log, git merge, git rm –
commands for developing and local versioning
git checkout files – update the files from the repository
git branch branch name – initial a new branch based on the
current revision

git pull – update local repository with new revision at the
remote repository
git push – propagate local repository to a remote repository

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 40 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Git – SVN Crash Course
http://git-scm.com/course/svn.html

git init svnadmin create repo
git clone url svn chekout url
git add file svn add file
git commit -a svn commit
git pull svn update
git status svn status
git log svn log
git rm file svn rm file
git mv file svn mv file
git tag -a name svn copy repo/trunk

repo/tags/name
git branch branch svn copy repo/trunk

repo/branches/branch
git checkout branch svn switch

repo/branches/branch

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 41 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Git – Example
% mkdir my_project
% cd my_project
% git init
Initialized empty Git repository in ~/my_project/.git/
% git init
% vim main.c
% git add main.c
% git st
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: main.c

% git ci -m "Add main program"
[master (root-commit) ab2afdf] Add main program
1 file changed, 7 insertions(+)

create mode 100644 main.c
% git st
On branch master
nothing to commit, working tree clean
% git log
commit ab2afdfc60e7702f1452288c83f97e6a6926e53c
Author: Jan Faigl <faiglj@fel.cvut.cz>
Date: Sun Dec 18 17:35:23 2016 +0100

Add main program

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 42 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

FEL, GitLab

https://gitlab.fel.cvut.cz

You can use the provided space for versioning sources of your
semester projects and assignments
After the cloning the repository to your local repository

You can push your changes in the local repository and pull modifi-
cations from the repository, e.g., made by other developers

You can also control access to your repositories and share them
with other FEL users

Collaboration with other students on the project

You need to create your private/public ssh-key to access to the
GitLab
Using server based git repository, you can combine local versioning
with server based backup

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 43 / 47

VCS Version Control Systems SVN - Subversion Git Versioning

Wrap-Up – What You Can Put under Version Control?
Source codes of your programs
Versioning of the Third-party libraries

Even though it make more sense to version source files, i.e., text files, you can
also versioning binary files, but you cannot expect a straightforward diff.

Versioning documents (text/binary)
File and Directory Layout for Storing a Scientific Paper in
Subversion

http://blog.plesslweb.ch/post/6628076310/file-and-directory-layout-for-storing-a-scientific

You should definitely put sources of your diploma or bachelor
thesis under version control Also as a sort of backup

Even you will use it only for your thesis, TEX or LATEX should be your option.

Repository and version control as an additional “backuping”
Repository on the server may usually be located on backuped and reliable disk
system.

Versioning can be used as a tool for sharing files
Be aware that files are persistent in the repository!

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 45 / 47

Topics Discussed

Summary of the Lecture

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 46 / 47

Topics Discussed

Topics Discussed

An overview of history of VCSs
Fundamental concepts and terminology
Brief overview of existing VCSs
Centralized and Distributed VCSs

Subversion – commands and basic usage
Git – commands and basic usage

FEL GitLab
Next: Exam!

Jan Faigl, 2016 B0B36PRP – Lecture 14: Version Control Systems 47 / 47

