Finally, we present a successor algorithm for the revolving door ordering, in
Algorithm 2.13. In this algorithm, the successor of the last k-subset is the first
one. In other words, we think of the list A™* as being ordered cyclicly, and
therefore we define

successor({1,...,k—1,n}) = {1,...,k}.

Note that this is also a minimal change.

Algorithm 2.13 begins by defining t4; to be n + 1. This means that we do not
have to handle the situation j = k as a special case.

Algorithm 2.13: KSUBSETREVDOORSUCCESSOR Aw., k,n)

trt1 —n+1
Fig=1
while (j < k) and (t; = j)
doj+jg+1
if k # j mod 2
ifj=1
s then Sn.T uwll.u.u
Ise { 7!
e ﬁn.ﬂ.kw .m_ -1
n......l» Tnu
m_mnsg ? Tai

else ﬁﬁt v]

2.4 Permutations
2.4.1 Lexicographic ordering

We now look at the generation of all n! permutations of the set {1,...,n}. A
permutation is a bijection from a set to itself. One way to represent a permutation
7:{1,...,n} = {1,...,n} is by listing its values, as follows:

[7[1],...,m[n]].

We call this the list representation of the permutation 7. Saying that 7 is a permu-
tation is equivalent to saying that each element in {1,...,n} occurs exactly once
in this list.

First, we will look at the lexicographic ordering of permutations. The lexico-
graphic ordering is defined in terms of the list representation. As an example,
when n = 3, the lexicographic ordering of the six permutations of {1,2,3} is as
follows:

—H. M. ..wu_q ﬂ_,. m. Mu. _”w_ H, mu_ Hmu u_ “_.,_, m..w. 1, MT _.m_ M, H_.

We begin by describing an algorithm for generating permutations in lexico-
graphic order. This generation algorithm depends on a successor algorithm that
finds the permutation that immediately follows a given permutation (in lexico-
graphic order). In Algorithm 2.14, 7 is a permutation of {1,...,n} given in list
representation.

Algorithm 2.14 has four steps. In the first while loop, we find ¢ such that

ali] < wli+1] > wli +2] > -+ > m[n].

Note that by setting 77[0] to 0, we ensure that the while loop terminates with 0 <
i<n—1.1Ifi=0,then
r=[nn-1,...,1]

is the last permutation lexicographically and has no successor. Otherwise, we
proceed to the second while loop, where we find the integer j such that 7[j] >
7[i] and n[k] < a[i] for j < k < n (ie., j is the position of the last element
among (i + 1],.. ., w[n] that is greater than 7[i]). The third step is to interchange
7[i] and 7[j], and the fourth step is to reverse the sublist

i + 11,..., wln].

Algorithm 2.14: PERMLEXSUCCESSOR (n,7)

(0] 0
t—n—1
while 7[i + 1] < 7[i]
doi+i—1
ifi =0
then return (“undefined”)
jé+&n
while 7[j] < =i ¢
doj+j—1
t + 7[j]
alj] « il
w[i] ¢
forh+i+1ton
do p[h] « w[h]
forh+«—i+1ton
do 7[h] < pln +i+1—h]
return ()

