
Dynamic
Programming

Examples

Selected dynamic programming problem
solutions from Programming Challanges

Is Bigger
Smarter?

Is Bigger Smarter?

● Goal: For two sequences W and S of integers find the
longest sequence (i1, i2, …, iK) such that W[i1] < W[i2] < … <
W[ik] and S[i1] > S[i2] > … > S[iK].

● Idea: Sort the elements of W and S according to, say, W
(remember original position of the element for the output).
For this new ordering, we define L[i] as the length of the
wanted sequence ending at i-th elephant. Initially, L[i] is 1
for all i. Then we iteratively update L[j] as follows:
L[j] = max{L[i] + 1 for i = 0 to j - 1 if S[i] > S[j] and W[i] != W[j]}

● Complexity: O(N2)

Is Bigger Smarter?
Input Sequence:
W: 6008 6000 500 1000 1100 6000 8000 6000 2000
S: 1300 2100 2000 4000 3000 2000 1400 1200 1900

Ordered by W:
O: 3 4 5 9 8 6 2 1 7
W: 500 1000 1100 2000 6000 6000 6000 6008 8000
S: 2000 4000 3000 1900 1200 2000 2100 1300 1400

Updating L:
L[1]: 1 1 1 1 1 1 1 1 1
L[2]: 1 1 1 1 1 1 1 1 1
L[3]: 1 1 2 1 1 1 1 1 1
L[4]: 1 1 2 3 1 1 1 1 1
L[5]: 1 1 2 3 4 1 1 1 1
L[6]: 1 1 2 3 4 3 1 1 1
L[7]: 1 1 2 3 4 3 3 1 1
L[8]: 1 1 2 3 4 3 3 4 1
L[9]: 1 1 2 3 4 3 3 4 4

Weights
and
Measures

Weights and Measures

● Goal: Given a list of turtles described by their weights and
strengths, you should determine the highest tower you can
build out of them, such that each turtle in the tower has
enough strenght to carry the turtles on its back (including
itself).

● Idea: Sort the turtles by their strength. Keep the height of
the heighest tower so far and for each tower store its
weight, starting with 0/0 tower (height/weight). Keep trying
to enlarge the existing towers using the turtles (in order)
until trying all of them.

● Complexity: O(Nh), where h is the height of the tallest
tower -- potentially N.

Weights and Measures

Input Sequence (weights and strenght):
W: 300 1000 200 100
S: 1000 1200 600 101

Ordered by S:
W: 100 200 300 1000
S: 101 600 1000 1200

Updating towers:
T[0]: 0 inf inf inf inf (initial “towers”)
T[1]: 0 100 inf inf inf
T[2]: 0 100 300 inf inf
T[3]: 0 100 300 600 inf
T[4]: 0 100 300 600 inf

Weights and Measures

● Correctness of this algorithm is in question!?
○ The order in which the turtles are tried does make a

difference! For example, random ordering or ordering
using the remaining strength (S[i] - W[i]) does not work,
consider turtles (17, 20), (3, 10).

○ Befare! uDebug shows an incorrect answer in this case
(solution by: forthright48)!

○ Good idea for a presentation?

Cutting Sticks

Cutting Sticks

● Goal: Given a stick of length L and places where to cut it (in
distance from the left end), determine the order in which to
make the cuts such that it is cheapest possible. The price
of the cut is equal to the length of the stick being cut.

● Idea: Lets define C[i][j] as the cheapest price of cutting the
stick from the i-th to j-th cut position. Define L[0] = 0 and L
[N + 1] = L, where N is the number of cuts. C[i][j] can be
(recursively) determine using the following formula:
C[i][j] = min{C[i][k] + C[k][j], i < k < j + L[j] - L[i]} for i < j + 1
C[i][j] = 0 for i = j + 1 (the “i-j stick” is just a single piece)

Cutting Sticks
In order to know the optimal price of the cut here...

… you need to know the price of the following cuting...

… the trick is in avoiding recomputing the prices of possible cuts...

… look that the answer to the red stick is used in finding the price of a cut of
this smaller stick. And not recomputing these really makes a difference!

