CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering
Department of Cybernetics

Epistasis.

Estimation-of-Distribution Algorithms.

Petr Pošík

Introduction to Epistasis

GA works well...

Problem f_{1} :

- defined over 40-bit strings

Epistasis

- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

Epistasis

- GA works well.
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

GA works well...

Problem f_{1} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{1}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{1}\left(x^{\mathrm{opt}}\right)=40$.
- the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Epistasis

- GA works well.
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example Discrete EDAs Pairwise Interactions Multivar. Interactions Scalability Analysis Summary

GA works well...

Problem f_{1} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{1}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{1}\left(x^{\text {opt }}\right)=40$.

■ the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Problem f_{1} contains no epistatic interactions among design variables.

GA fails...

Problem f_{2} :

- defined over 40-bit strings
$\frac{\text { Epistasis }}{\text { - GA works well. }}$
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

Epistasis

- GA works well.
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis Summary

GA fails...

Problem f_{2} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{2}\left(x^{\mathrm{opt}}\right)=40$.
- the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Epistasis

- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

GA fails...

Problem f_{2} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{2}\left(x^{\text {opt }}\right)=40$.
- the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Problem f_{2} contains some interactions among variables, GA is not aware of them and works with the individual bits as if they were truly independent of each other.

Epistasis

- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

GA fails...

Problem f_{2} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{2}\left(x^{\mathrm{opt}}\right)=40$.
- the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Problem f_{2} contains some interactions among variables, GA is not aware of them and works with the individual bits as if they were truly independent of each other.

None of the above mentioned problem characteristics is important to judge if the GA will work well!!!

GA works again...

Still solving f_{2} :

- defined over 40-bit strings
$\frac{\text { Epistasis }}{\bullet \text { GA works well }}$
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example

- the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{2}\left(x^{\mathrm{opt}}\right)=40$.
\square the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.
Instead of the uniform crossover,
- let us allow the crossover only after each 5th bit.
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

Epistasis

- GA works well.
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example

GA works again...

Still solving f_{2} :

- defined over 40-bit strings
- the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
- the quality of the best solution: $f_{2}\left(x^{\mathrm{opt}}\right)=40$.
- the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.

Instead of the uniform crossover,

- let us allow the crossover only after each 5th bit.
Discrete EDAs

Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

Epistasis

- GA works well.
- GA fails..
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example Discrete EDAs

Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

GA works again...

Still solving f_{2} :

- defined over 40-bit strings

■ the quality of the worst solution: $f_{2}\left(x^{\text {worst }}\right)=0$.
■ the quality of the best solution: $f_{2}\left(x^{\mathrm{opt}}\right)=40$.
■ the best solution: $x^{\mathrm{opt}}=(1111 \ldots 1)$.
Instead of the uniform crossover,

- let us allow the crossover only after each 5th bit.

Problem f_{2} contains some interactions among variables and GA knows about them.

Epistasis

Epistasis:

- Effects of one gene are dependent on (influenced, conditioned by) other genes.

Epistasis

- GA works well.
- GA fails..
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

Epistasis

- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs

Pairwise Interactions
Multivar. Interactions
Scalability Analysis Summary

$$
\begin{align*}
& f=x_{1}+x_{2}+x_{3} \tag{1}\\
& f=0.1 x_{1}+0.7 x_{2}+3 x_{3} \tag{2}\\
& f=x_{1} x_{2} x_{3} \tag{3}\\
& f=x_{1}+x_{2}^{2}+\sqrt{x_{3}} \tag{4}\\
& f=\sin \left(x_{1}\right)+\cos \left(x_{2}\right)+e^{x_{3}} \tag{5}\\
& f=\sin \left(x_{1}+x_{2}\right)+e^{x_{3}} \tag{6}
\end{align*}
$$

Epistasis

Epistasis:

- Effects of one gene are dependent on (influenced, conditioned by) other genes.

Epistasis

- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary
■ Other names: dependencies, interdependencies, interactions.

Linkage:

- Tendency of certain loci or alleles to be inherited together.

When optimizing the following functions, which of the variables are linked together?

$$
\begin{align*}
& f=x_{1}+x_{2}+x_{3} \tag{1}\\
& f=0.1 x_{1}+0.7 x_{2}+3 x_{3} \tag{2}\\
& f=x_{1} x_{2} x_{3} \tag{3}\\
& f=x_{1}+x_{2}^{2}+\sqrt{x_{3}} \tag{4}\\
& f=\sin \left(x_{1}\right)+\cos \left(x_{2}\right)+e^{x_{3}} \tag{5}\\
& f=\sin \left(x_{1}+x_{2}\right)+e^{x_{3}} \tag{6}
\end{align*}
$$

Notes:

- Almost all real-world problems contain interactions among design variables.
- The "amount" and "type" of interactions depend on the representation and the objective function.
- Sometimes, by a clever choice of the representation and the objective function, we can get rid of the interactions.

Linkage Identification Techniques

Problems:

- How to detect dependencies among variables?

Epistasis

- GA works well
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

Linkage Identification Techniques

Problems:

- How to detect dependencies among variables?

Epistasis

- How to use them?
- GA works well.
- GA fails...
- GA works again..
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

Linkage Identification Techniques

Problems:

- How to detect dependencies among variables?

Epistasis

- GA works well.
- GA fails...
- GA works again...
- Epistasis
- LI techniques

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis Summary

Introduction to EDAs

Epistasis

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary
Conventional GA operators

- are not adaptive, and
- cannot (or ususally do not) discover and use the interactions among solution components.

Epistasis

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions Scalability Analysis Summary \qquad

Conventional GA operators

- are not adaptive, and
- cannot (or ususally do not) discover and use the interactions among solution components.

The goal of recombination operators:

- Intensify the search in areas which contained "good" individuals in previous iterations.
- Must be able to take the interactions into account.
- Why not directly describe the distribution of "good" individuals???

GA vs EDA

Algorithm 1: Genetic Algorithm	
1 begin	
2	Initialize the population.
3	while termination criteria are not met do
4	Select parents from the population.
5	Cross over the parents, create offspring.
6	Mutate offspring.
	Incorporate offspring into the population

"Select \rightarrow cross over \rightarrow mutate" approach
Why not use directly...

GA vs EDA

	rithm 1: Genetic Algorithm
${ }_{1}$ begin	
2	Initialize the population.
3	while termination criteria are not met do
4	Select parents from the population.
5	Cross over the parents, create offspring.
6	Mutate offspring.
7	Incorporate offspring into the population

"Select \rightarrow cross over \rightarrow mutate" approach

Why not use directly...

Or even...

```
Algorithm 3: Estimation-of-Distribution Alg.
(Type 2)
    begin
            Initialize the model.
    while termination criteria are not met do
            Sample new individuals.
            Select better ones.
            Update the model based on selected
            ones.
    "Sample \(\rightarrow\) select \(\rightarrow\) update model" approach
```


EDAs

Explicit probabilistic model:

- Sound and principled way of working with dependencies.

Epistasis EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

Epistasis EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions Multivar. Interactions Scalability Analysis Summary

EDAs

Explicit probabilistic model:

- Sound and principled way of working with dependencies.
- Adaptation ability (different behavior in different stages of evolution).

Names:

EDA Estimation-of-Distribution Algorithm
PMBGA Probabilistic Model-Building Genetic Algorithm
IDEA Iterated Density Estimation Algorithm

EDAs

Explicit probabilistic model:

- Sound and principled way of working with dependencies.

Epistasis
EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions
■ Adaptation ability (different behavior in different stages of evolution).

Multivar. Interactions
Scalability Analysis
Summary

Names:

EDA Estimation-of-Distribution Algorithm
PMBGA Probabilistic Model-Building Genetic Algorithm
IDEA Iterated Density Estimation Algorithm

Continuous EDAs (a very simplified view):

- Histograms and (Mixtures of) Gaussian distributions are used most often as the probabilistic model.
- Algorithms with Gaussians usually become very similar to CMA-ES.

EDAs

Explicit probabilistic model:

- Sound and principled way of working with dependencies.
\qquad - Adaptation ability (different behavior in different stages of evolution).

EDAs

- Genetic Algorithms
- GA vs EDA
- EDAs

Motivation Example
Discrete EDAs
Pairwise Interactions Multivar. Interactions Scalability Analysis Summary

Names:
EDA Estimation-of-Distribution Algorithm
PMBGA Probabilistic Model-Building Genetic Algorithm
IDEA Iterated Density Estimation Algorithm

Continuous EDAs (a very simplified view):

- Histograms and (Mixtures of) Gaussian distributions are used most often as the probabilistic model.
- Algorithms with Gaussians usually become very similar to CMA-ES.

In the following, we shall talk only about discrete (binary) EDAs.

Motivation Example

Example

5-bit OneMax (CountOnes) problem:

- $f_{\text {Dx1bitOneMax }}(\mathbf{x})=\sum_{d=1}^{D} x_{d}$

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

- Optimum: 11111, fitness: 5
- Population size: 6
- Tournament selection: $t=2$
- Model: vector of probabilities $p=\left(p_{1}, \ldots, p_{D}\right)$
- Model learning:
- estimate p from selected individuals
- Model sampling:

Algorithm: Univariate Marginal Distribution Algorithm (UMDA)

- each p_{d} is the probability of observing 1 at d th element
- generate 1 on d th position with probability p_{d} (independently of other positions)

UMDA Behaviour for OneMax problem

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions Scalability Analysis

Summary

- 1 s are better then 0s on average, selection increases the proportion of 1s
- Recombination preserves and combines 1 s , the ratio of 1 s increases over time
- If we have many 1 s in population, we cannot miss the optimum

UMDA behaves similarly to GA with uniform crossover!

What about a different fitness?

For OneMax function:

- UMDA works well, all the bits probably eventually converge to the right value.

EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary \qquad
The trap function is defined as

$$
f_{\text {trap }}(x)= \begin{cases}5 & \text { if } u(x)=5 \\ 4-u(x) & \text { otherwise }\end{cases}
$$

where $u(\boldsymbol{x})$ is the so called unity function and returns the number of 1 s in x (it is
 actually the One Max function).

UMDA behaviour on concatanated traps

Traps:

- Optimum in 111111... 1

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary
■ But $f_{\text {trap }}(0 * * * *)=2$ while $f_{\text {trap }}(1 * * * *)=1.375$

- 1-dimensional probabilities lead the GA to the wrong way!
- Exponentially increasing population size is needed, otherwise GA will not find optimum reliably.

What can be done about traps?

The $f_{\text {trap }}$ function is deceptive:

- Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
\qquad ■ The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
\qquad

EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

What can be done about traps?

The $f_{\text {trap }}$ function is deceptive:

- Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution
- The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
- Harder than the needle-in-the-haystack problem:
- regular haystack simply does not provide any information, where to search for the needle
- $f_{\text {trap-haystack actively }}$ lies to you-it points you to the wrong part of the haystack

What can be done about traps?

The $f_{\text {trap }}$ function is deceptive:

- Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

- The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
- Harder than the needle-in-the-haystack problem:
- regular haystack simply does not provide any information, where to search for the needle
- $f_{\text {trap-haystack actively }}$ lies to you-it points you to the wrong part of the haystack
- But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

What can be done about traps?

The $f_{\text {trap }}$ function is deceptive:

- Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

- The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
- Harder than the needle-in-the-haystack problem:
- regular haystack simply does not provide any information, where to search for the needle
- $f_{\text {trap-haystack actively }}$ lies to you-it points you to the wrong part of the haystack
- But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!

Model learning:

- build model for each 5-tuple of bits
- compute $p(00000), p(00001), \ldots, p(11111)$,

What can be done about traps?

The $f_{\text {trap }}$ function is deceptive:

- Statistics over $1 * * * *$ and $0 * * * *$ do not lead us to the right solution

Epistasis
EDAs
Motivation Example

- Example
- UMDA Pipeline
- UMDA: OneMax
- Trap function
- UMDA: Traps
- Beating traps
- Good news!

Discrete EDAs
Pairwise Interactions

- The same holds for statistics over $11 * * *$ and $00 * * *, 111 * *$ and $000 * *, 1111 *$ and 0000*
- Harder than the needle-in-the-haystack problem:
- regular haystack simply does not provide any information, where to search for the needle
- $f_{\text {trap-haystack actively }}$ lies to you-it points you to the wrong part of the haystack
- But: $f_{\text {trap }}(00000)<f_{\text {trap }}(11111), 11111$ will be better than 00000 on average
- 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for OneMax problem!
Multivar. Interactions
Scalability Analysis
Model learning:
Summary
- build model for each 5-tuple of bits
- compute $p(00000), p(00001), \ldots, p(11111)$,

Model sampling:

- Each 5-tuple of bits is generated independently
- Generate 00000 with probability $p(00000), 00001$ with probability $p(00001), \ldots$

Good news!

The right statistics work great!

Algorithm	Nr. of evaluations
UMDA with 5bit BB	$\mathcal{O}(D \ln D)(W O W!)$
Hill-Climber	$\mathcal{O}\left(D^{k} \ln D\right), k=5$
GA with uniform xover	approx. $\mathcal{O}\left(2^{D}\right)$
GA with 1-point xover	similar to unif. xover

What shall we do next?

If we were able to

- find the right statistics with a small overhead, and
- use them in the UMDA framework,
we would be able to solve order- k separable problems using $\mathcal{O}\left(D^{2}\right)$ evaluations.
- ... and there are many problems of this type.

The problem solution is closely related to the so-called linkage learning, i.e. discovering and using statistical dependencies among variables.

Discrete EDAs

EDAs without interactions

1. Population-based incremental learning (PBIL) Baluja, 1994
2. Univariate marginal distribution algorithm (UMDA) Mühlenbein and Paaß, 1996
3. Compact genetic algorithm (cGA) Harik, Lobo, Goldberg, 1998

Similarities:
■ all of them use a vector of probabilities

Differences:

- PBIL and cGA do not use population (only the vector p); UMDA does
- PBIL and cGA use different rules for the adaptation of p

Advantages:

- Simplicity
- Speed
- Simple simulation of large populations

Limitations:

- Reliable only for order-1 decomposable problems (i.e., problems without interactions).

EDAs with Pairwise Interactions

From single bits to pairwise models
How to describe two positions together?

- Using the joint probability distribution:

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Number of free parameters:

- Using conditional probabilities:

$$
\begin{array}{cl}
\text { A B } & p(A, B)=p(B \mid A) \cdot p(A): \\
& p(B=1 \mid A=0) \\
\text { Number of free parameters: } & p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

$p(A, B)$			
		B	
		0	1
A	0	$p(0,0)$	$p(0,1)$
	1	$p(1,0)$	$p(1,1)$

Question: what is the number of parameters in case of the following models?

From single bits to pairwise models
How to describe two positions together?

- Using the joint probability distribution:

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Number of free parameters: 3

$p(A, B)$			
		B	
		0	1
A	0	$p(0,0)$	$p(0,1)$
	1	$p(1,0)$	$p(1,1)$

- Using conditional probabilities:

$$
\begin{array}{ll}
& p(A, B)=p(B \mid A) \cdot p(A): \\
\text { Number of free parameters: } & p(B=1 \mid A=0) \\
& p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

Question: what is the number of parameters in case of the following models?

From single bits to pairwise models
How to describe two positions together?

- Using the joint probability distribution:

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Number of free parameters: 3

$p(A, B)$			
		B	
		0	1
A	0	$p(0,0)$	$p(0,1)$
	1	$p(1,0)$	$p(1,1)$

- Using conditional probabilities:

$$
\begin{array}{cl}
\text { Number of free parameters: } 3 & p(A, B)=p(B \mid A) \cdot p(A): \\
& p(B=1 \mid A=0) \\
& p(B=1 \mid A=1) \\
& p(A=1)
\end{array}
$$

Question: what is the number of parameters in case of the following models?

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Example with pairwise dependencies: dependency tree

- Nodes: binary variables (loci of chromozome)
- Edges: dependencies among variables
- Features:
- Each node depends at most on 1 other node
- Graph does not contain cycles
- Graph is connected

Learning the structure of dependency tree:

1. Score the edges using mutual information:

$$
I(X, Y)=\sum_{x, y} p(x, y) \cdot \log \frac{p(x, y)}{p(x) p(y)}
$$

2. Use any algorithm to determine the maximum spanning tree of the graph, e.g. Prim (1957)
(a) Start building the tree from any node
(b) Add such a node that is connected to the tree by the edge with maximum score

Example of dependency tree learning

Example of dependency tree learning

Dependency tree: probabilities

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	
$p\left(X_{4}=1 \mid X_{1}\right)$	
$p\left(X_{5}=1 \mid X_{4}\right)$	
$p\left(X_{2}=1 \mid X_{4}\right)$	
$p\left(X_{3}=1 \mid X_{2}\right)$	
Whole model	

Dependency tree: probabilities

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	1
$p\left(X_{4}=1 \mid X_{1}\right)$	
$p\left(X_{5}=1 \mid X_{4}\right)$	
$p\left(X_{2}=1 \mid X_{4}\right)$	
$p\left(X_{3}=1 \mid X_{2}\right)$	
Whole model	

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	1
$p\left(X_{4}=1 \mid X_{1}\right)$	2
$p\left(X_{5}=1 \mid X_{4}\right)$	
$p\left(X_{2}=1 \mid X_{4}\right)$	
$p\left(X_{3}=1 \mid X_{2}\right)$	
Whole model	

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	1
$p\left(X_{4}=1 \mid X_{1}\right)$	2
$p\left(X_{5}=1 \mid X_{4}\right)$	2
$p\left(X_{2}=1 \mid X_{4}\right)$	
$p\left(X_{3}=1 \mid X_{2}\right)$	
Whole model	

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	1
$p\left(X_{4}=1 \mid X_{1}\right)$	2
$p\left(X_{5}=1 \mid X_{4}\right)$	2
$p\left(X_{2}=1 \mid X_{4}\right)$	2
$p\left(X_{3}=1 \mid X_{2}\right)$	2
Whole model	

Dependency tree: probabilities

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Probability	Number of params
$p\left(X_{1}=1\right)$	1
$p\left(X_{4}=1 \mid X_{1}\right)$	2
$p\left(X_{5}=1 \mid X_{4}\right)$	2
$p\left(X_{2}=1 \mid X_{4}\right)$	2
$p\left(X_{3}=1 \mid X_{2}\right)$	2
Whole model	9

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

EDAs with pairwise interactions

1. MIMIC (sequences)

- Mutual Information Maximization for Input Clustering
- de Bonet et al., 1996

2. COMIT (trees)

- Combining Optimizers with Mutual Information Trees
- Baluja and Davies, 1997

3. BMDA (forrest)

- Bivariate Marginal Distribution Algorithm
- Pelikan and Mühlenbein, 1998

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions

- Graph. models
- Dependency tree
- DT learning
- DT model
- Pairwise EDAs
- Summary

Multivar. Interactions
Scalability Analysis
Summary

Summary

- Advantages:
- Still simple
- Still fast
- Can learn something about the structure
- Limitations:
- Reliable only for order-1 or order-2 decomposable problems

EDAs with Multivariate Interactions

ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)
Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis
Summary

ECGA

Extended Compact GA, Harik, 1999
Marginal Product Model (MPM)

Epistasis

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis
Summary

- Variables are treated in groups
- Variables in different groups are considered statistically independent
- Each group is modeled by its joint probability distribution
- The algorithm adaptively searches for the groups during evolution

Problem	Ideal group configuration					
OneMax	$[1][2][3][4][5][6][7][8][9][10]$					
5bitTraps	$[1$	2	3	4	$5][6$	7
8	8	9	$10]$			

Learning the structure

1. Evaluation metric: Minimum Description Length (MDL)
2. Search procedure: greedy
(a) Start with each variable belonging to its own group
(b) Perform such a join of two groups which improves the score best
(c) Finish if no join improves the score

ECGA: Evaluation metric

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis
Summary

Minimum description length:
Minimize the number of bits required to store the model and the data encoded using the model

$$
D L(\text { Model, Data })=D L_{\text {Model }}+D L_{\text {Data }}
$$

Model description length:
Each group g has $|g|$ dimensions, i.e. $2^{|g|}-1$ frequencies, each of them can take on values up to N

$$
D L_{\text {Model }}=\log N \sum_{g \in G}\left(2^{|g|}-1\right)
$$

Data description length using the model:
Defined using the entropy of marginal distributions (X_{g} is $|g|$-dimensional random vector, x_{g} is its realization):

$$
D L_{\text {Data }}=N \sum_{g \in G} h\left(X_{g}\right)=-N \sum_{g \in G} \sum_{x_{g}} p\left(X_{g}=x_{g}\right) \log p\left(X_{g}=x_{g}\right)
$$

BOA

Bayesian Optimization Algorithm: Pelikán, Goldberg, Cantù-Paz, 1999
Bayesian network (BN)

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis
Summary

- Conditional dependencies (instead groups)
- Sequence, tree, forrest - special cases of BN
- For trap function:

- The same model used independently in
- Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999
- Learning Factorized Density Alg. (LFDA), Mühlenbein et al., 1999

BOA: Learning the structure

1. Evaluation metric:

- Bayesian-Dirichlet metric, or

Epistasis

- Bayesian information criterion (BIC)

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions

- ECGA
- MDL Metric
- BOA
- BOA: Learning

Scalability Analysis
Summary
2. Search procedure: greedy
(a) Start with graph with no edges (univariate marginal product model)
(b) Perform one of the following operations, choose the one which improves the score best

- Add an edge
- Delete an edge
- Reverse an edge
(c) Finish if no operation improves the score

BOA solves order- k decomposable problems in less then $\mathcal{O}\left(D^{2}\right)$ evaluations!

$$
n_{\text {evals }}=\mathcal{O}\left(D^{1.55}\right) \text { to } \mathcal{O}\left(D^{2}\right)
$$

Scalability Analysis

Test functions

One Max:

$f_{D \times 1 \mathrm{biHOneMax}}(x)=\sum_{d=1}^{D} x_{d}$

Equal Pairs:

$$
f_{\text {DbitEqualPairs }}(x)=1+\sum_{d=2}^{D} f_{\text {EqualPair }}\left(x_{d-1}, x_{d}\right) \quad \quad f_{\text {EqualPair }}\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}=x_{2} \\ 0 & \text { if } x_{1} \neq x_{2}\end{cases}
$$

Sliding XOR:

$$
\begin{aligned}
f_{\text {DbitslidingXOR }}(x) & =1+f_{\text {AllEqual }}(x)+ \\
& +\sum_{d=3}^{D} f_{\mathrm{XOR}}\left(x_{d-2}, x_{d-1}, x_{d}\right)
\end{aligned} \quad f_{\text {AllEqual }}(x)=\left\{\begin{array}{ll}
1 & \text { if } x=(000 \ldots 0) \\
1 & \text { if } x=(111 \ldots 1) \\
0 & \text { otherwise }
\end{array}\right\}
$$

$$
f_{\text {DbitTrap }}(x)= \begin{cases}D & \text { if } u(x)=D \\ D-1-u(x) & \text { otherwise }\end{cases}
$$

Concatenated short basis functions:

$$
f_{N \times K \text { bitBasisFunction }}=\sum_{k=1}^{K} f_{\text {BasisFunction }}\left(x_{K(k-1)+1}, \ldots, x_{K k}\right)
$$

Test function (cont.)

1. $f_{40 x 1 b i t O n e M a x}$

- order-1 decomposable function, no interactions

2. $f_{1 \times 40 b i t E q u a l P a i r s}$

- non-decomposable function
- weak interactions: optimal setting of each bit depends on the value of the preceding bit

3. $f_{8 \times 5 b \mathrm{bitEqualPairs}}$

- order-5 decomposable function

4. $f_{1 \times 40 b i t S l i d i n g X O R}$

- non-decomposable function
- stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits

5. $f_{8 \times 5 \text { bitSlidingXOR }}$

- order-5 decomposable function

6. $f_{8 \times 5 \text { bitTrap }}$

- order-5 decomposable function
- interactions in each 5-bit block are very strong, the basis function is deceptive

Scalability analysis

Facts:

- using small population size, population-based optimizers can solve only easy problems

EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

- increasing the population size, the optimizers can solve increasingly harder problems
\square ... but using a too big population is wasting of resources.

Scalability analysis

Facts:

- using small population size, population-based optimizers can solve only easy

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary problems

- increasing the population size, the optimizers can solve increasingly harder problems
- ... but using a too big population is wasting of resources.

Scalability analysis:

- determines the optimal (smallest) population size, with which the algorithm solves the given problem reliably
- reliably: algorithm finds the optimum in 24 out of 25 runs)
- for each problem complexity, the optimal population size is determined e.g. using the bisection method
- studies the influence of the problem complexity (dimensionality) on the optimal population size and on the number of needed evaluations

Scalability on the One Max function

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.
\qquad
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

Model structure during evolution

During the evolution, the model structure is increasingly precise and at the end of the evolution, the model structure describes the problem structure exactly.

NO! That's not true!

Motivation Example
Why?

Discrete EDAs
Pairwise Interactions Multivar. Interactions

Scalability Analysis

- Test functions
- Test function (cont.)
- Scalability analysis
- OneMax
- Non-dec. Eq. Pairs
- Decomp. Eq. Pairs
- Non-dec. Sl. XOR
- Decomp. Sl. XOR
- Decomp. Trap
- Model evolution

Summary

- In the beginning, the distribution patterns are not very discernible, models similar to uniform distributions are used.
- In the end, the population converges and contains many copies of the same individual (or a few individuals). No interactions among variables can be learned. Model structure is wrong (all bits independent), but the model describes the position of optimum very precisely.
- The model with the best matching structure is found somewhere in the middle of the evolution.
- Even though the right structure is never found during the evolution, the problem can be solved successfully.

Summary

Learning outcomes

After this lecture, a student shall be able to

- explain what an epistasis is and show an example of functions with and without epistatic relations;

Epistasis
EDAs
Motivation Example
Discrete EDAs
Pairwise Interactions
Multivar. Interactions
Scalability Analysis
Summary

- Learning outcomes
- demonstrate how epistatic relationships can destroy the efficiency of the search performed by an optimization algorithm, and explain it using schemata;
- describe an Estimation-of-Distribution algorithm and explain its differences from ordinary EA;
- describe in detail and implement a simple UMDA algorithm for binary representations;
- understand, fit to data, and use simple Bayesian networks;
- explain the commonalities and differences among EDAs not able to work with any interactions (PBIL, cGA, UMDA);
- explain the commonalities and differences among EDAs able to work with only pairwise interactions (MIMIC, COMIT, BMDA);
- explain the commonalities and differences among EDAs able to work with multivariate interactions (ECGA, BOA);
- explain the model learning procedures used in ECGA and BOA;
- understand what effect the use of a more complex model has on the efficiency of the algorithm when used on problems with increasingly hard interactions.

