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Abstract. This paper deals with evolutionary algorithms for solving the vehicle routing
problem. More precisely, the paper is concerned with eight evolutionary crossover opera-
tors, which have originally been designed for the traveling salesman problem but can also
be used for vehicle routing. The considered crossovers are tested on a set of well known
benchmark problem instances. The obtained experimental results clearly show that the
behavior and relative ranking of the operators within the vehicle routing environment is
different than within the traveling salesman environment.
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1. Introduction

The vehicle routing problem (VRP) [19] is an interesting combinatorial optimization
task, which deals with scheduling a fleet of vehicles to distribute goods between a
depot and customers. A set of routes for vehicles should be determined, which are
in some sense optimal, e.g. the shortest or the cheapest possible. Certain constraints
should be taken into account, such as customer demands or vehicle capacities.

Evolutionary algorithms (EAs) [12] are a popular metaheuristic, which tries to
solve optimization problems by imitating processes observed in nature. An EA main-
tains a population of feasible solutions to a particular problem instance. Evolution
of those solutions takes place through application of evolutionary operators such as
selection, crossover, mutation, etc.

An important property of the VRP is that it is computationally very hard. In-
deed, its instances with more than 30 or 40 customers cannot be solved to optimality,
but only approximately by metaheuristics. Thus it makes sense to consider applica-
tions of EAs to the VRP. Another important property of the VRP is that it resembles
very much the well known traveling salesman problem (TSP) [9]. Therefore it seems
plausible to assemble an EA for the VRP by reusing components that have originally
been designed for the TSP.

In recent years there have been many attempts to solve the VRP by EAs, for
instance [1, 2, 3, 4, 10, 13, 15]. Most of those attempts rely on evolutionary operators
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borrowed from the TSP. The authors usually choose operators that are considered
best for the TSP. However, it is not clear whether the same components can function
equally well within the VRP setting.

The aim of this paper is to test suitability of eight crossover operators for the
VRP. All of them have previously been used for the TSP, but not with equal success.
The paper will try to establish a relative ranking of the operators within the VRP
environment and see if that ranking is the same as for the TSP.

The paper is organized as follows. After this introduction, some necessary pre-
liminaries about the VRP, TSP and EAs are listed in Section 2. Section 3 gives
more details about the chosen crossover operators. Section 4 describes the overall
design of our EAs that have been used for testing the crossovers. Section 5 presents
the obtained experimental results. The final Section 6 gives a conclusion.

2. VRP, TSP and EAs

In this paper we consider the standard capacitated VRP or CVRP [19], which is
described as follows. Let G = (V,A) be a complete directed graph, where V =
{0, 1, 2, . . . , n} is a vertex set and A is an arc set. Vertices i = 1, 2, . . . , n correspond
to the customers, and vertex 0 corresponds to the depot. A nonnegative cost cij is
assigned to each arc i → j, and it represents the travel cost spent to go from vertex
i to vertex j. Each customer vertex i is associated with a nonnegative demand di to
be delivered, and the depot 0 has a fictitious demand d0 = 0. A set of K identical
vehicles, each with the capacity C, is available at the depot. The CVRP consists of
finding a collection of ≤ K elementary cycles in G with minimum total cost such
that:

• each cycle visits the depot vertex 0,

• each customer vertex i = 1, 2, . . . , n is visited by exactly one cycle,

• the sum of the demands di of the vertices visited by a cycle does not extend
the vehicle capacity C.

The cycles constituting the solution to a VRP instance specify optimal routes for
the vehicles delivering goods from the depot to the customers. Thereby the demand
of each customer is satisfied and no vehicle is overloaded.

The chosen variant of the VRP can obviously be considered as a generalization
of the TSP. Indeed, the TSP can be defined as a special case of our VRP where the
number of vehicles K is equal to 1, and the capacity C of the vehicle is infinite.

An EA is a randomized algorithm which maintains a population of chromosomes.
Each chromosome represents a feasible solution to a given instance of an optimization
problem. The population is iteratively changed, thus giving a series of population
versions usually called generations. It is expected that the best chromosome in
the last generation represents a near-optimal solution to the considered problem
instance.

An EA consists of many building blocks, which can be chosen and combined in
various ways. Consequently, there is a wide variety of possible EAs for the same
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optimization problem. Here follows a list of most important building blocks and
design options.

• The data structure used to represent a chromosome.

• The initialization procedure that produces the initial population of chromo-
somes.

• The evaluation procedure used to evaluate a chromosome to give some measure
of its ”goodness” or ”fitness”. The goodness measure is related to the objective
function of the original optimization problem.

• The evolutionary operators that produce new chromosomes from old ones.
There exist unary evolutionary operators, called mutations, which create new
chromosomes (mutants) by a small random change in a single chromosome.
There also exist higher order operators called crossovers, which create new
chromosomes (children) by combining parts from several (usually two) chro-
mosomes (parents).

• The selection procedure, used to find “good” chromosomes for crossover, or
“bad” chromosomes that will be discarded from the population.

• The termination condition, which determines when the whole evolutionary
process should be stopped.

As already mentioned before, EAs for solving the VRP are often assembled from
components that have originally been designed for the TSP. Indeed, it has been quite
common to represent the chromosome for the VRP as a permutation of customer
vertices 1, 2, . . . , n [11]. With such representation, it is also possible to reuse a
variety of evolutionary operators that transform permutations into permutations.
For instance we can use:

• order crossover (OX) [7, 10, 11, 15, 17],

• partially mapped crossover (PMX) [11, 18],

• edge recombination crossover (ERX) [11, 17],

• cycle crossover (CX) [10, 11],

• alternating edges crossover (AEX) [8, 11, 14],

• heuristic greedy or random or probabilistic crossover (HGreX or HRndX or
HProX) [8, 11, 18],

• mutation by inversion (IM) [10],

• mutation by reinsertion (RM) [11],

• swap mutation (SM) [20].



362 K.Puljić and R.Manger

It is important to note that, contrary to the TSP, a chromosome in form of a
permutation does not uniquely determine a solution to the VRP. Namely, such chro-
mosome must be interpreted as a concatenation of vehicle routes, and many different
combinations of routes can produce the same concatenation. Consequently, using
permutations as chromosomes makes the evaluation procedure much more compli-
cated, since prior to computing the objective function the permutation must be
splitted into feasible individual routes. If we insist on optimal evaluation, i.e. on
such splitting that minimizes the objective function, then the split procedure from
[15] must be used. It is a relatively complicated procedure based on solving auxil-
iary shortest-path problems, whose complexity per evaluation is as high as O(n2).
Another possibility is to use a simpler split procedure based on the greedy approach.
Then it is assumed that the first vehicle serves as many customers from the initial
part of the chromosome as possible regarding the capacity C, the second vehicle
serves as many customers as possible from the subsequent part of the chromosome,
etc. With its linear complexity, the greedy procedure is relatively fast although not
necessarily optimal.

Apart from the components that originate from the TSP, EAs for the VRP
may also contain more general components applicable to any kind of problem. For
instance, selection is usually accomplished by tournament selection [12], where a
predefined number of chromosomes is picked up randomly, and then the best or the
worst of them is selected. The initial population is often formed by some constructive
heuristics or randomly. The termination condition is usually based on the elapsed
time or the number of evaluations. Most algorithms support elitism [5], i.e. the best
chromosome is never discarded.

3. Crossover operators

As stated before, this paper is concerned with crossover operators for the VRP that
have been borrowed from the TSP. In the previous section we have already listed
eight such crossovers: OX, PMX, ERX, CX, AEX, HGreX, HRndX and HProX.
Appropriate references have also been given. Still, since the mentioned operators
are in focus of our interest, we now describe each of them in detail and give some
illustrative examples. Note that all considered crossovers work with chromosomes
that are represented as permutations of customer vertices. Such chromosome is
sometimes interpreted as a big circle (either undirected or directed) spanning the
whole graph. Costs of the involved arcs can also be relevant.

3.1. Order crossover (OX)

The OX operator acts as follows: it copies a part of the child chromosome from
the first parent and constructs the remaining part by following the vertex ordering
in the second parent. More precisely, two cut points are randomly selected, and
the part of the first parent located between those cut points is copied to the child.
The remaining positions in the child are then filled one at a time, starting after the
second cut point, by considering the customer vertices in order found in the second
parent (wrapping around when the end of the list is reached).
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For instance, let the two parents and the two cut points “|” be as follows:

p1 = (1 2 3 | 5 4 6 7 | 8 9),

p2 = (4 5 2 | 1 8 7 6 | 9 3).

Then the first child c1 is:

c1 = (2 1 8 | 5 4 6 7 | 9 3).

If we exchange the roles of the two parents p1 and p2, we can obtain the second
child:

c2 = (3 5 4 | 1 8 7 6 | 9 2).

3.2. Partially mapped crossover (PMX)

The PMX operator is similar to OX. Again we have two cut points given. The
first parent’s part between the two cut points is first copied to the child. Then
the remaining parts of the child are filled with the remaining vertices so that their
absolute positions are inherited as much as possible from the second parent.

For instance, let the parents p1 and p2 and the cut points “|” be the same as
in the previous OX example. By switching the roles of p1 and p2 we immediately
construct two children c1 and c2 initialized as

c1 = (∗ ∗ ∗ | 5 4 6 7 | ∗ ∗),
c2 = (∗ ∗ ∗ | 1 8 7 6 | ∗ ∗).

Here ∗-s denote positions that are not settled yet. Note that the two initialized
sections of c1 and c2 define a mapping:

5 → 1, 4 → 8, 6 → 7, 7 → 6.

Next, the vacant parts of c1 are filled (if possible) with vertices from p2 that happen
to be on the same positions. We obtain

c1 = (∗ ∗ 2 | 5 4 6 7 | 9 3).

The two remaining positions should be filled with 4 and 5. But since 4 and 5 are
already present in c1, we replace them according to the above mapping with 8 and
1, respectively. Thus the completed first child is

c1 = (8 1 2 | 5 4 6 7 | 9 3).

The second child c2 is completed by an analogous procedure, and it looks as follows:

c2 = (5 2 3 | 1 8 7 6 | 4 9).
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3.3. Edge recombination crossover (ERX)

The ERX operator ignores arc directions and interprets a chromosome as an undi-
rected cycle of edges. The idea is that the child should inherit as many edges from
the parents as possible, and that edges that are common to both parents should
have priority. The procedure of constructing the child is based on the concept of
neighborhood. A neighbor of a vertex is another vertex that is adjacent to the orig-
inal one either within the first or within the second parent cycle. The procedure
starts from an arbitrary vertex and proceeds in steps. In each step, the next vertex
is chosen among the neighbors of the previous one. If there are more feasible choices,
then the neighbor is chosen whose own list of neighbors is the shortest.

For instance, let the two parents be

p1 = (1 2 3 4 5 6 7 8 9),

p2 = (4 1 2 8 7 6 9 3 5).

We can start constructing the child c from the vertex 1. Then the second vertex in
c should be chosen among the neighbors of 1, and these are 2, 4 and 9. Since 2 itself
has three neighbors, 4 three neighbors, and 9 four neighbors, the choice should be
restricted to 2 or 4. If we randomly select 4, then the child is initialized as

c = (1 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗).

In the next step, we choose the third vertex in c among the neighbors of 4, and these
are 1, 3 and 5. But 1 is already present in c, so the choice restricts to 3 or 5. Since
3 has four neighbors of its own, and 5 has three neighbors, we must choose 5, and
the child becomes

c = (1 4 5 ∗ ∗ ∗ ∗ ∗ ∗).

By proceeding in the same fashion, we finally obtain

c = (1 4 5 6 7 8 2 3 9).

3.4. Cycle crossover (CX)

The CX operator tries to realize the following idea: a vertex should be copied into
the child from one parent, but its position should be inherited from the other parent.

For instance, let the two parents p1 and p2 be the same as in the previous ERX
example. We start by picking the first vertex from p1 and by copying it into the
child c1. Thus c1 is initialized as

c1 = (1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗).

Next we select the vertex from p2 at the same position 1 - it is 4. We copy 4 into c1
but to the position where it resides in p1, i.e. to position 4. Thus we have:

c1 = (1 ∗ ∗ 4 ∗ ∗ ∗ ∗ ∗).
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Next we select the vertex from p2 at the same position 4 - it is 8. We copy 8 into c1
to the position where it can be found in p1, i.e. to position 8. Indeed:

c1 = (1 ∗ ∗ 4 ∗ ∗ ∗ 8 ∗).

By proceeding with two more steps in the same fashion, we obtain

c1 = (1 2 3 4 ∗ ∗ ∗ 8 ∗).

Now the last inserted vertex is 2 at position 2. It means that the next choice should
be the vertex from p2 at the same position - it is vertex 1. But 1 is not feasible
since it is already present within c1. In such situation, we use only p2 to complete
c1, i.e. all remaining positions in c1 are filled with the vertices from p2 at the same
positions. The final c1 looks as follows:

c1 = (1 2 3 4 7 6 9 8 5).

By reversing the roles of the two parents, we can also obtain the other child:

c2 = (4 1 2 8 5 6 7 3 9).

3.5. Alternating edges crossover (AEX)

The AEX operator interprets a chromosome as a directed cycle of arcs. The child
cycle is formed by choosing in alternation arcs from the first and from the second
parent, with some additional random choices in case of infeasibility.

For instance, let the two parents be:

p1 = (5 1 7 8 4 9 6 2 3),

p2 = (3 6 2 5 1 9 8 4 7).

The procedure starts by choosing the arc 5 → 1 from p1 as the first arc. So the child
is initialized as

c = (5 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗),
Next, the arc from p2 is added that goes out from 1, i.e. 1 → 9. Thus the child
becomes

c = (5 1 9 ∗ ∗ ∗ ∗ ∗ ∗).
Next, the arc from p1 going out from 9 is added, etc. After few steps the following
partially formed child is obtained:

c = (5 1 9 6 2 3 ∗ ∗ ∗).

The arc going out from 3 should be chosen from p2, but such choice is infeasible
since it would close the circle too early. To avoid this situation, one of the remaining
unvisited vertices is picked up randomly, for instance 7. Thus the child becomes

c = (5 1 9 6 2 3 7 ∗ ∗).

From this point the ordinary procedure can be resumed again by choosing the arc
7 → 8 from p1, and then 8 → 4 from p2. The completed child looks as follows:

c = (5 1 9 6 2 3 7 8 4).
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3.6. Heuristic crossovers (HGreX, HRndX, HProX)

The HGreX operator bears some resemblance to AEX. The child cycle is formed by
choosing from each vertex the cheaper of the two respective parent arcs. In case of
infeasibility, some additional choices are made.

Let the two parents p1 and p2 be the same as in the previous AEX example.
Suppose that the involved arcs have the following costs:

p1 . . . c51 = 2, c17 = 2, c78 = 6, c84 = 8, c49 = 3, c96 = 6, c62 = 4, c23 = 4, c35 = 3,

p2 . . . c36 = 6, c62 = 4, c25 = 2, c51 = 2, c19 = 6, c98 = 8, c84 = 8, c47 = 3, c73 = 5.

The procedure starts from a randomly chosen vertex, for instance 5. The arcs in
both parents going out from the vertex 5 are considered. In our particular case,
both parents use the same arc 5 → 1. So the child is initiated as

c = (5 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗).

Next, the parent arcs leaving the vertex 1 are considered, i.e. 1 → 7 with the cost
c17 = 2 and 1 → 9 with the cost c19 = 6, respectively. Among them 1 → 7 is
cheaper, thus it is copied into the child:

c = (5 1 7 ∗ ∗ ∗ ∗ ∗ ∗).

Next, the cheaper among the parent arcs 7 → 8 and 7 → 3 is selected, so that the
child becomes

c = (5 1 7 3 ∗ ∗ ∗ ∗ ∗).
Next, the arcs 3 → 5 and 3 → 6 are considered. The first of them is cheaper
but infeasible since it would close the cycle too early. So exceptionally, the more
expensive arc 3 → 6 is chosen, and the child becomes

c = (5 1 7 3 6 ∗ ∗ ∗ ∗).

The procedure proceeds in a similar manner, and after the next step we have

c = (5 1 7 3 6 2 ∗ ∗ ∗).

Then the arcs 2 → 3 and 2 → 5 have to be considered, but both of them are infeasible
since they lead to already visited vertices. In such situation the operator randomly
generates a prescribed number of feasible arcs, e.g. 2 → 4, 2 → 8 and 2 → 9, and
picks up the cheapest among them. Supposing that 2 → 8 is the cheapest, the child
would finally be completed in the following way:

c = (5 1 7 3 6 2 8 4 9).

The remaining two operators, HRndX and HProX, can be considered as simple
variants of HGreX. They consist of the same steps but use different criteria for
choosing an arc in a particular step. While HGreX applies the greedy approach and
always selects the cheapest among the considered arcs, HRndX and HProX make
random choices. Thereby HRndX picks up any arc with equal probability, while
HProX gives more chance to a cheaper arc. For the same parents p1 and p2 as
shown before, HRndX or HProX could produce a different child than HGreX, for
instance it could be

c = (5 1 7 3 6 2 9 8 4).
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4. Design of experiments

Our experiments are based on running and testing several variants of a simple EA.
All variants conform to the same generic structure shown in Figure 1, but they differ
in two aspects:

• choice of a crossover operator,

• presence or absence of mutation.

There are nine possible choices for crossover combined with two possibilities regard-
ing mutation, thus giving altogether eighteen variants.

EvolutionVRP( ) {
input the VRP instance and the EvaluationLimit;
initialize the population P with 30 chromosomes;

evaluate the whole population P;

EvaluationCount = 0;

while (EvaluationCount < EvaluationLimit) {
// crossover
Parent1 = a "good" chromosome from P selected by tournament;

Parent2 = a "good" chromosome from P selected by tournament;

Child = crossover of Parent1 and Parent2;
leave Parent1 and Parent2 in P as they are;

evaluate Child; EvaluationCount += 1;

insert Child into P by taking into account similarity;

// mutation (optional)

Rnd = a random integer between 1 and 100;

if (Rnd == 1) { // probability 1%

Parent = a randomly chosen chromosome

from P which is not the best one in P;
Mutant = mutation of Parent;
evaluate Mutant; EvaluationCount += 1;
replace Parent in P by Mutant;

}
}

}

Figure 1: Generic pseudocode of our EA for solving the VRP

The first eight choices of crossovers feature OX, PMX, ERX, CX, AEX, HGreX,
HRndX and HProX, respectively. Within one choice, a single operator is run in
isolation as the only available form of crossover. The purpose of such separate
testing is to measure performance of particular operators and to obtain their relative
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ranking. As the ninth choice, a mix of eight crossovers is considered, where any of
them is activated randomly with equal probability. The goal of such additional
testing is to investigate possible synergies among the operators. Mutation, when
present, is realized as a mix of three standard operators: IM, SM and RM, so that any
of them is selected randomly with equal probability. By activating or deactivating
mutation operators, we can explore their influence on crossovers. Namely, it is
expected that mutations could help crossovers to escape from local optima and
achieve better performance.

In our EA, the chromosome is represented as a permutation of customer vertices,
so that the above listed crossover and mutation operators can be applied. The ini-
tialization procedure simply produces 30 random permutations. According to our
preliminary tests, the population size 30 seems to be just adequate. Tournament
selection of a “good” chromosome is performed with three participants within a tour-
nament, while a “bad” chromosome is chosen by using two participants. Evaluation
is always accomplished according to the optimal split procedure. The whole process
is stopped after a given number of evaluations.

In the course of the algorithm, the population P changes due to insertions of new
chromosomes or replacements of existing chromosomes. All insertions rely on the
concept of similarity. We say that two chromosomes are similar if their goodness
values differ in less than 1% of the best value within the population. Insertion “by
taking into account similarity” means the following.

• If there exists another chromosome in P that is similar to the new one, then
the better of those two “twins” is retained in P and the other one is discarded.

• If there is no similar chromosome, then the new one is retained in P , and some
other “bad” chromosome from P is selected by tournament and discarded.

It is easy to check that according to our rules the size of P always remains the
same, i.e. 30. Indeed, whenever a chromosome is inserted, another one is discarded.
Note that our algorithm supports a kind of elitism, namely the best chromosome is
discarded only if it is replaced by an even better chromosome. Note also that the
algorithm is purely evolutionary or non-hybrid. Indeed, it is built of evolutionary
procedures and operators, and it does not incorporate elements of any other heuristic
or metaheuristic.

5. Results of experiments

In order to perform experiments, we have implemented our EA for the VRP as a
C++ program. In our experiments, we have tested the implemented algorithm on
seven benchmark VRP instances from the well known Christofides-Mingozzi-Toth
collection [6]. Table 1 gives some basic parameters of those instances, including
the costs of their best known solutions as recorded by [6]. Each of the previously
described eighteen variants of the EA has been evaluated on each of the seven VRP
instances, thus giving altogether 126 experiments. In all program runs, the number
of evaluations has been set to 4000000.

Since our algorithm is randomized, its repeated execution on the same input data
with the same number of processes usually produces slightly different results. To
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VRP Number Number Vehicle Cost of the
instance of customers of vehicles capacity best known

(n) (K) (C) solution

CMT01 50 5 160 524.61
CMT02 75 10 140 835.26
CMT03 100 8 200 826.14
CMT04 150 12 200 1028.42
CMT05 199 17 200 1291.45
CMT11 120 9 200 1042.11
CMT12 100 10 200 819.56

Table 1: Benchmark VRP instances from the CMT collection

amortize this effect of randomization, each experiment from our agenda has been
repeated 30 times. Consequently, all measured values reported in the forthcoming ta-
bles and figures are in fact averages obtained over 30 repetitions. The corresponding
coefficients of variation are all below 0.05, thus assuring that the reported averages
are accurate and stable.

The results of experiments are summarized in Tables 2 and 3. Thereby Table 2
corresponds to the nine variants of the EA where no mutation is applied, while
Table 3 comprises the variants with mutations included. Both tables are organized
in the same way: a row corresponds to a particular problem instance and a column to
a particular EA variant characterized by a certain choice of crossover operators. Thus
a table entry presents the solution of the corresponding instance by the corresponding
variant. The solution is described by its cost and as the relative error with respect
to the best known solution. The average error for a chosen variant over all instances
is also given. The best solution for a chosen instance over all variants is marked by
bold face.

Figures 2 and 3 give a more detailed presentation of results for a single chosen
problem instance. Thereby Figure 2 refers to the EA variants without mutation,
and Figure 3 to the variants with mutation, respectively. In both figures, each graph
corresponds to a particular crossover operator, and it shows how the current solution
improves depending on the number of evaluations. Only the four best performing
operators are presented. The labels on the left figure margin denote the absolute
solution cost, while the labels on the right margin refer to the relative cost compared
to the best known solution.

From the data presented in Tables 2-3 and Figures 2-3, the following facts can
be observed.

• Mutation always improves performance, apparently by helping crossovers to
escape from local minima.

• Mixing different crossover operators produces better results than using any
operator alone. Thus a synergy among crossovers seems to exist. Improvement
is more visible when there is no mutation.
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Problem Crossover operator
Instance OX PMX ERX CX AEX HGreX HRndX HProX mix

CMT01 558.71 1097.21 571.25 1106.12 540.97 543.40 549.62 546.66 537.95
6.5% 109.1% 8.9% 110.8% 3.1% 3.6% 4.8% 4.2% 2.5%

CMT02 893.49 1732.40 916.81 1723.13 869.14 866.68 891.43 878.86 861.33
7.0% 107.4% 9.8% 106.3% 4.1% 3.8% 6.7% 5.2% 3.1%

CMT03 928.37 2296.97 913.93 2330.28 868.12 863.54 937.53 902.19 845.11
12.4% 178.0% 10.6% 182.1% 5.1% 4.5% 13.5% 9.2% 2.3%

CMT04 1268.33 3465.57 1264.64 3437.10 1132.83 1104.28 1301.62 1192.74 1078.08
23.3% 237.0% 23.0% 234.2% 10.2% 7.4% 26.6% 16.0% 4.8%

CMT05 1649.36 4630.01 1695.02 4526.89 1446.95 1398.50 1720.65 1531.35 1379.61
27.7% 258.5% 31.2% 250.5% 12.0% 8.3% 33.2% 18.6% 6.8%

CMT11 1321.74 4198.80 1303.84 4150.51 1079.38 1088.12 1278.92 1102.38 1053.33
26.8% 302.9% 25.1% 298.3% 3.6% 4.4% 22.7% 5.8% 1.1%

CMT12 867.75 2632.77 883.59 2666.87 830.24 829.39 852.33 829.18 821.94
5.9% 221.2% 7.8% 225.4% 1.3% 1.2% 4.0% 1.2% 0.3%

average 15.7% 202.0% 16.6% 201.1% 5.6% 4.7% 15.9% 8.6% 3.0%

Table 2: Solutions obtained without mutation

Problem Crossover operator
Instance OX PMX ERX CX AEX HGreX HRndX HProX mix

CMT01 550.10 555.51 553,84 629.02 535.67 537.62 546.74 541.32 534.57
4.9% 5.9% 5.6% 19.9% 2.1% 2.5% 4.2% 3.2% 1.9%

CMT02 884.54 889.95 886.18 1016.13 860.27 866.47 884.79 870.89 860.36
5.9% 6.5% 6.1% 21.7% 3.0% 3.7% 5.9% 4.3% 3.0%

CMT03 882.85 894.23 907.12 1136.65 858.43 845.73 916.18 878.27 846.54
6.9% 8.2% 9.8% 37.6% 3.9% 2.4% 10.9% 6.3% 2.5%

CMT04 1162.69 1200.99 1251.28 1717.23 1113.62 1085.53 1273.10 1154.64 1077.89
13.1% 16.8% 21.7% 67.0% 8.3% 5.6% 23.8% 12.3% 4.8%

CMT05 1541.30 1564.66 1705.16 2388.64 1431.84 1381.22 1699.21 1498.21 1380.08
19.3% 21.2% 32.0% 85.0% 10.9% 7.0% 31.6% 16.0% 6.9%

CMT11 1258.44 1261.56 1276.88 1659.36 1076.62 1068.69 1227.27 1080.36 1052.21
20.8% 21.1% 22.5% 59.2% 3.3% 2.6% 17.8% 3.7% 1.0%

CMT12 842.40 897.14 851.94 1231.51 823.78 825.18 849.82 826.24 822.53
2.8% 9.5% 4.0% 50.3% 0.5% 0.7% 3.7% 0.8% 0.4%

average 10.5% 12.7% 14.5% 48.7% 4.6% 3.5% 14.0% 6.6% 2.9%

Table 3: Solutions obtained with mutation

• If only a single crossover operator is used, then, depending on the problem
instance and whether mutation is used or not, the best performance is accom-
plished either by AEX or HGreX.

• Among single crossovers HProX also produces very good results, although it
never happens to be the best.
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Figure 2: Details for CMT05 - solution cost vs. number of evaluations - no mutation

• Operators OX, ERX and HRndX are usable, but their performance is inferior
to AEX, HGreX or HProX.

• Exceptionally bad performance is provided by PMX and CX (if there is no
mutation) and again by CX (if mutation is present).

In order to verify the above observations, we have also made an adequate sta-
tistical analysis. By assuming that columns of Tables 2 and 3 are random and
independent samples, we conducted a series of statistical hypotheses tests. More
precisely, for each pair of crossover operators we tested the hypothesis that one of
the operators performs better than the other. Thereby the performance of an oper-
ator has been characterized by its mean relative error computed over the whole set
of problem instances with known solutions. Consequently, each test was in fact a
standard test for the difference of means based on small samples and the Student’s
t-distribution [16]. In our analysis the mix of eight crossovers was treated as an ad-
ditional crossover. The experiments with or without mutation have been analyzed
separately.

The outcomes of our hypotheses testing have been summarized in Tables 4 and 5.
Table 4 corresponds to the experiments without mutation, while Table 5 corresponds
to the experiments with mutation. A single table row contains on its right-hand side
the list of crossovers that are inferior to the crossover on its left-hand side. All
reported inferiorities are statistically significant at the significance level 0.05 [16].

In Table 4 or 5, each crossover is ranked according to its number of inferior
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Figure 3: Details for CMT05 - solution cost vs. number of evaluations - mutation included

crossovers. The rankings in the two tables are somewhat different at the bottom,
but they are almost the same at the top. As expected, the best rank in both tables
belongs to the mix of operators. Also the best or the second-best are AEX and
HGreX followed by HProX. Again according to the expectations, PMX and CX
share the worst rank in Table 4, while CX alone is the worst in Table 5.

As we see, the presented statistical analysis supports most of our previous obser-
vations about crossovers. Indeed, the difference between any of the three highest-
ranked operators and any of the five lowest-ranked operators is statistically signif-
icant at the significance level 0.05. Still, the differences among some pairs of the
higher-ranked operators are not statistically significant. This is for instance true
for HGreX vs. HProX, or AEX vs. HProX or the mix vs. HGreX or the mix vs.
AEX. Thus we cannot rule out the possibility that HProX can provide equally good
performance as HGreX or AEX. Also, it is quite possible that HGreX or AEX alone
can produce the same quality of results as the mix of all eight operators.

Note that the above rankings can be collated with the reports from [8, 11, 17].
Those reports describe the behavior of the same crossovers within their original TSP
environment. Indeed, according to [11, 17], ERX should produce the best results,
while OX should be the second best. Moreover, in [11] it is claimed that PMX
and CX are inferior to OX. Similarly, [8, 11] state that both HGreX and AEX give
discouraging results, although HGreX seems to be better than AEX. Obviously, our
observations differ in several aspects from the cited reports, thus showing that the
operator rankings valid for the TSP cannot be applied directly to the VRP.
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Crossover operator The list of inferior crossovers

mix HProX, OX, HRndX, ERX, CX, PMX
HGreX OX, HRndX, ERX, CX, PMX
AEX OX, HRndX, ERX, CX, PMX
HProX ERX, CX, PMX
OX CX, PMX

HRndX CX, PMX
ERX CX, PMX
CX -
PMX -

Table 4: Outcomes of statistical hypotheses testing - no mutation.

Crossover operator The list of inferior crossovers

mix OX, PMX, HRndX, ERX, CX
HGreX OX, PMX, HRndX, ERX, CX
AEX OX, PMX, HRndX, ERX, CX
HProX PMX, ERX, CX
OX CX
PMX CX
HRndX CX
ERX CX
CX -

Table 5: Outcomes of statistical hypotheses testing - mutation included.

Note also that the study presented in this paper bears some resemblance to the
study in [4]. Indeed, both papers evaluate VRP crossovers on roughly the same
set of benchmark problem instances. Still, there are some differences that make di-
rect comparison of results hard and dubious. The main difference is that our paper
considers only crossovers borrowed from the TSP, while [4] introduces a specially
tailored operator (turning out to be their best). In addition, [4] uses a slightly dif-
ferent chromosome representation, and a hybrid algorithm that combines evolution
with local search.

6. Conclusion

Since the VRP has very much in common with the TSP, it is expected that both
problems can be solved by similar EAs where the same components are reused. In
this paper we have investigated how certain crossover operators originally designed
for the TSP behave when they are applied to the VRP. More precisely, we have con-
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sidered the following eight crossovers: OX, PMX, ERX, CX, AEX, HGreX, HRndX
and HProX.

According to our experiments, all considered operators are suitable for the VRP,
and they produce the best results when they are combined together. However, if
only one operator is used in isolation, then the best performance is provided by
HGreX or AEX. Very good results also are obtained by HProX. On the other hand,
PMX and CX produce exceptionally poor solutions.

The obtained relative ranking of operators is quite different than within the TSP.
Indeed, the most popular crossovers and apparently the best for the TSP are OX and
ERX. Yet within the VRP environment both OX and ERX are clearly outperformed
by AEX, HGreX or HProX.

In this paper we were only interested in exploring relative strengths and weak-
nesses of various crossover operators. We did not aim to design the most competitive
algorithm for the VRP so far. Consequently, we have restricted ourselves to sim-
ple and purely evolutionary processes with no additional hybridizations or solution
improvements such as local search. Still, we believe that the obtained results could
serve as guidelines for construction of more sophisticated algorithms.
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