A0B17MTB - Matlab

Part \#2

Miloslav Čapek
miloslav.capek@fel.cvut.cz Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field
B2-626, Prague
...
:.
:

Learning how to ...

Complex numbers

Matrix creation

Operations with matrices

Complex numbers

- more entry options in Matlab
- we want to avoid confusion
- speed

```
>> C5 = sqrt(-1)
```

```
>> C1 = 1 + 1j
>> C2 = 1 + 5i % preferred
>> C3 = 1 + i
>> C4 = 1 + j5
```

- frequently used functions

real, imag	real and imaginary part of a complex number
conj	complex conjugate
abs	absolute value of a complex number
comple	angle in complex plane (in [rad])
isreal	constructs complex number from real and imaginary components
i, j	checks if input is a complex number (more on that later)
cplxpair	complex unit
	sorts complex numbers into complex conjugate pairs

Complex numbers

$\mathfrak{I}\{z\} \bullet$ create complex number z and its complex conjugate

$$
\begin{aligned}
& z=1+1 \mathrm{j} \\
& s=z^{*}
\end{aligned}
$$

- switch between Cartesian and polar form (find $|z|, \varphi$)

$$
\begin{aligned}
& z=\mathfrak{R}\{z\}+\mathrm{j} \mathfrak{J}\{z\}=a+\mathrm{j} b \\
& z=|z| \mathrm{e}^{\mathrm{j} \varphi},|z|=\sqrt{a^{2}+b^{2}} \\
& z=|z|(\cos (\varphi)+\mathrm{j} \sin (\varphi))
\end{aligned}
$$

- verify Moivre's theorem

$$
\begin{aligned}
& z^{n}=\left(|z| \mathrm{e}^{\mathrm{j} \varphi}\right)^{n} \\
& z^{n}=|z|^{n}(\cos (n \varphi)+\mathrm{j} \sin (n \varphi))
\end{aligned}
$$

$$
\begin{aligned}
& Z=|z|=\sqrt{2} \approx 1.4142 \\
& \varphi=\arctan \left(\frac{\mathfrak{S}\{z\}}{\mathfrak{R}\{z\}}\right)=\arctan \left(\frac{1}{1}\right) \approx 0.7854 \mathrm{rad}
\end{aligned}
$$

Complex numbers

- find out magnitude of a complex vector (avoid indexing)
- use abs, sqrt
(1) $\left|Z_{x}\right|,\left|Z_{y}\right|$

$$
\begin{aligned}
& \mathbf{Z}=\left(\begin{array}{ll}
1+1 \mathrm{j} & \sqrt{2}
\end{array}\right) \\
& \|\mathbf{Z}\|=?, \mathbf{Z} \in \mathbb{C}^{2}
\end{aligned}
$$

(2) $|\mathbf{Z}|=\sqrt{\left|Z_{x}\right|^{2}+\left|Z_{y}\right|^{2}}=\sqrt{Z_{x} Z_{x}^{*}+Z_{y} Z_{y}^{*}}$

$$
=\sqrt{\mathbf{Z} \cdot \mathbf{Z}^{*}}=\sqrt{|\mathbf{Z}|^{2}}
$$

- alternatively, use following functions:
- norm
- dot (dot product)
- hypot (hypotenuse)

Transpose and matrix conjugate

- Pay attention to situations where the matrix is complex, $\quad \mathbf{A} \in \mathbb{C}^{M \times N}$
- two distinct operations:

transpose	$\mathbf{A}^{\mathrm{T}}=\left[A_{i j}\right]^{\mathrm{T}}=\left[A_{j i}\right]$	transpose (A) $\%<-$ don't use $^{\text {A.' }}$
transpose + conjugate	$\mathbf{A}^{\mathrm{H}}=\mathbf{A}_{i j}^{\mathrm{H}}=\left[\mathbf{A}^{*}\right]^{\mathrm{T}}$	$\operatorname{conj}(\mathrm{A}) \%<-$ don't use
A' $^{\prime}$		

```
>> A = magic(2) + 1j*magic(2)'
A =
\begin{tabular}{ll}
\(1.0000+1.0000 i\) & \(3.0000+4.0000 i\) \\
\(4.0000+3.0000 i\) & \(2.0000+2.0000 i\)
\end{tabular}
```

> A. ${ }^{\prime}$	
ans $=$	
$1.0000+1.0000 i$	$4.0000+3.0000 i$
$3.0000+4.0000 i$	$2.0000+2.0000 i$

```
>> A'
ans =
\(1.0000-1.0000 i \quad 4.0000-3.0000 i\)
\(3.0000-4.0000 i \quad 2.0000-2.0000 i\)
\(3.0000-4.0000 i \quad 2.0000-2.0000 i\)
```


Entering matrices - „: "

- large vectors and matrices with regularly increasing elements can be typed in using colon operator
- a is the smallest element (,,from"), incr is increment, b is the largest element („to")
$>A=1: 4: 17$

```
>> A = a:incr:b
```

$\mathrm{A}=$
$1 \quad 5 \quad 9 \quad 13$
17

- b doesn't have to be element of the series in question
- last element N-incr then follows the inequality:

$$
|a+N \cdot i n c r| \leq|b|
$$

- if incr is ommited, the increment is set equal to 1

$$
>A=a: b
$$

Entering matrices

- Using the colon operator ,,:" create
- following vectors

$$
\begin{aligned}
& \mathbf{u}=\left(\begin{array}{llll}
1 & 3 & \ldots & 99
\end{array}\right) \\
& \mathbf{v}=\left(\begin{array}{llll}
25 & 20 & \ldots & -5
\end{array}\right)^{\mathrm{T}}
\end{aligned}
$$

- matrix
- caution, the third column cant be created using colon operator ":" only

$$
\mathbf{T}=\left(\begin{array}{ccc}
-4 & 1 & \frac{\pi}{2} \\
-5 & 2 & \frac{\pi}{4} \\
-6 & 3 & \frac{\pi}{6}
\end{array}\right)
$$

Entering matrices - linspace, logspace

- colon operator defines vector with evenly spaced points
- In the case fixed number of elements of a vector is required, use linspace:

$$
\gg A=\text { linspace }(a, b, N) ;
$$

linspace (0, 2, 5)
$\Rightarrow A=\operatorname{limspace}(0,2,5)$

Entering matrices

- create a vector of 100 evenly spaced points in the interval <-1.15,75.4>
- create a vector of 201 evenly spaced points in the interval <100,-100>
- create a vector with spacing of -10 in the interval <100,-100>
- try both options using linspace and colon ":"

Entering matrices using functions

- special types of matrices of given size are needed quite often
- Matlab offers number of functions to serve this purpose
- example: matrix filled with zeros
- will be used quite often

```
zeros(m) % matrix B of size m\timesm
zeros(m, n) % matrix B of size m\timesn
zeros(m, n, p,...) % matrix B of size m\timesn\timesp\times...
zeros([m n])
% matrix B of size m\timesn
B = zeros(m, 'single') % matrix B of size m\timesm, of type 'single')
% see Help for other options
```


Entering matrices using functions

- following useful functions analogical to the zeros function are available

ones	matrix filled with ones
eye	identity matrix
NaN, Inf	matrix filled with NaN, matrix filled with Inf
magic	matrix suitable for Matlab experiments, notice its interesting properties
rand, randn, randi	matrix filled with random numbers coming from uniform and normal distribution, matrix filled with uniformly distributed random integers
randperm	returns a vector containing a random permutation of numbers
diag	creates diagonal matrix or returns diagonal of a matrix
blkdiag	constructs block diagonal matrix from input arguments
cat	groups several matrices into one (depending on dimension)
true, false	creates a matrix of logical ones and zeros
pascal, hankel	Pascal matrix, Hankel matrix

- for further functions see Matlab \rightarrow Mathematics \rightarrow Elementary Math \rightarrow Constants and Test Matrices

Entering matrices using functions

- create following matrices
- use Matlab functions
- begin with matrices you find easy to cope with

$$
\begin{aligned}
& \mathbf{M}_{1}=\left(\begin{array}{ll}
\mathrm{NaN} & \mathrm{NaN} \\
\mathrm{NaN} & \mathrm{NaN}
\end{array}\right) \\
& \mathbf{M}_{2}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \\
& \mathbf{M}_{3}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -5
\end{array}\right) \\
& \mathbf{M}_{4}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Entering matrices using functions

- try to create empty 3-dimensional array of type double
- can you find another option?

Entering matrices

- quite often there are several options how to create given matrix
- it is possible to use output of one function as an input of another function in Matlab:
- consider
- clarity

```
>> plot(diag(randn(10, 1), 1))
```

- simplicity
- speed
- convention
- e.g. band matrix with ' 1 ' on main diagonal and with ' 2 ' and ' 3 ' on secondary diagonals

```
>> N = 10;
>> diag(ones(N,1)) + diag(2*ones(N-1,1),1) + diag(3*ones(N-1,1),-1)
```

- can be sorted out using for cycle as well (see next slides), might be faster ...
- some other idea?

Dealing with sparse matrices

- Matlab provides support for working with sparse matrices
- most of the elements of sparse matrices are zeros and it pays off to store them in a more efficient manner
- to create sparse matrix S out of a matrix A :

```
S = sparse(A),
```

- conversion of a sparse matrix to a full matrix :

$$
B=f u l l(S),
$$

- in the case of need see Help for other functions

Matrix operations \#1

- there are other useful functions apart from transpose (transpose) and matrix diagonal (diag) :

0.3404	0.2551	0.9593	0.2575
0.5853	0.5060	0.5472	0.8407
0.2238	0.6991	0.1386	0.2543
0.7513	0.8909	0.1493	0.8143

- lower triangular matrix

```
>> U = triu(P),
```

$\gg \mathrm{U}=\operatorname{triu}(\mathrm{P})$
$\mathrm{U}=$

$>\mathrm{L}=\operatorname{tril}(\mathrm{P})$

```
>> L = tril(P),
```

I =

- a matrix can be modified taking into account secondary diagonals as well

$$
\gg \mathrm{L}=\operatorname{triu}(\mathrm{P},-1)
$$

$\gg \mathrm{U} 2=\operatorname{triu}(\mathrm{F},-1)$
$\mathrm{U} 2=$

0.3404	0.2551	0.9593	0.2575
0.5853	0.5060	0.5472	0.8407
0	0.6991	0.1386	0.2543
0	0	0.1493	0.8143

Matrix operations \#2

- function repmat is used to copy (part of) a matrix

$$
\begin{aligned}
& \gg B=\operatorname{repmat}(A, m, n) \text {, } \\
& \text { - e.g. } \\
& \begin{array}{|lll}
\hline \mathbf{A}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13}
\end{array}\right) \\
\hline
\end{array}
\end{aligned}
$$

- repmat is a very fast function
- comparison of execution time of creating a $1 \mathrm{e} 4 \times 1 \mathrm{e} 4$ matrix filled with zeros :

```
>> X = zeros(1e4, le4); % computed in 0.18s
>> Y repmat (0, 1e4, le4); % computed in 0.0004s, BUT... don't use it
```

- it is for you to consider the way of matrix allocation ...

Matrix operations \#3

- function reshape is used to reshuffle a matrix

```
>> B = reshape(A, m, n),
```

- eng.

$$
\mathbf{A}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

```
>> B = reshape(A, [4 1]),
>> B = reshape(A, 1, 4),
```

A_{11}
A_{21}
A_{12}
A_{22}

A_{11}	A_{21}	A_{12}	A_{22}

Matrix operations \#4

- following functions are used to swap the order of
- columns: fliplr
$\mathbf{A}=\left(\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23}\end{array}\right)$
- rows: fliud
- row-wise or column-wise: flipdim

$$
\mathbf{A}=\left(\begin{array}{lll}
A_{13} & A_{12} & A_{11} \\
A_{23} & A_{22} & A_{21}
\end{array}\right)
$$

>> B = flipud(A),

$$
\mathbf{A}=\left(\begin{array}{lll}
A_{21} & A_{22} & A_{23} \\
A_{11} & A_{12} & A_{13}
\end{array}\right)
$$

$$
\begin{aligned}
& \gg B=f \operatorname{lipdim}(A, 1), \\
& \gg B=f l i p d i m(A, 2),
\end{aligned}
$$

- the same result is obtained using indexing (see next slides)

Matrix operations \#5

- circular shift is also available
- can be carried out in chosen dimension (row-wise/ column-wise)
- can be carried out in both directions (back / forth)

- Consider the difference between flipdimacircshift

Matrix operations \#1

- convert the matrix $\mathbf{A}=\left(\begin{array}{cc}1 & \pi \\ \mathrm{e} & -\mathrm{i}\end{array}\right)$ to have the form of matrices \mathbf{A}_{1} to \mathbf{A}_{4}
- use repmat, reshape,triu,tril and conj

$$
\begin{aligned}
& \mathbf{A}_{1}=\left(\begin{array}{cccccc}
1 & \pi & 1 & \pi & 1 & \pi \\
\mathrm{e} & -\mathrm{i} & \mathrm{e} & -\mathrm{i} & \mathrm{e} & -\mathrm{i}
\end{array}\right) \quad \mathbf{A}_{2}=\left(\begin{array}{lllll}
1 & \pi & \mathrm{e} & -\mathrm{i}
\end{array}\right) \\
& \mathbf{A}_{4}=\left(\begin{array}{ccccccc}
1 & \pi & 0 & 0 & 0 & 0 \\
\mathrm{e} & -\mathrm{i} & \mathrm{e} & 0 & 0 & 0 \\
0 & \pi & 1 & \pi & 0 & 0 \\
0 & 0 & \mathrm{e} & -\mathrm{i} & \mathrm{e} & 0 \\
0 & 0 & 0 & \pi & 1 & \pi \\
0 & 0 & 0 & 0 & \mathrm{e} & -\mathrm{i}
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{A}_{3}=\left(\begin{array}{cc}
1 & \pi \\
\mathrm{e} & +\mathrm{i} \\
1 & \pi \\
\mathrm{e} & +\mathrm{i} \\
1 & \pi \\
\mathrm{e} & +\mathrm{i}
\end{array}\right)
$$

Matrix operations \#2

- create following matrix (use advanced techniques)

$$
\mathbf{A}=\left(\begin{array}{llllll}
1 & 2 & 3 & 1 & 2 & 3 \\
0 & 2 & 4 & 0 & 2 & 4 \\
0 & 0 & 5 & 0 & 0 & 5
\end{array}\right)
$$

- save the matrix in file named 'matrix.mat'
- create matrix \mathbf{B} by swapping columns in matrix \mathbf{A}
- create matrix \mathbf{C} by swapping rows in matrix \mathbf{B}

- add matrices \mathbf{B} and \mathbf{C} in the file 'matrix.mat '

Matrix operations \#3

- compare and interpret following commands:

```
>> x = (1:5)';
% entering vector
>> X = repmat (x, [1 10]), % 1. option
>> X = x(:, ones(10, 1)), % 2. option
```

$x=(1: 5)^{\prime}$
$x=$
1
2
3
4
5

- repmat is powerful, but not always the most time-efficient function

```
>> x = repmat (x,[1 10])
x =
\begin{tabular}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{tabular}
>> x = x(:, ones(10,1))
x =
\begin{tabular}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{tabular}
```


Vector and matrix operations

- remember that matrix multiplication is not commutative, i.e. $\mathbf{A B} \neq \mathbf{B A}$
- remember that vector \times vector product results in

$$
\mathbf{v}_{M, 1} \mathbf{u}_{1, N}=\mathbf{w}_{M, N}
$$

$$
\mathbf{v}_{1, M} \mathbf{u}_{M, 1}=w_{1,1}
$$

	u_{11}	u_{12}
v_{11}	w_{11}	w_{12}
v_{21}	w_{21}	w_{22}
v_{31}	w_{31}	w_{32}

- ... pay attention to the dimensions of matrices!

Element-by-element vector product

- it is possible to multiply arrays of the same size in the element-byelement manner in Matlab
- result of the operation is an array
- size of all arrays are the same, e.g. in the case of 1×3 vectors:

$$
\mathbf{a}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

```
>> a*b
|\begin{array}{lll}{\mp@subsup{a}{1}{}}&{\mp@subsup{a}{2}{}}&{\mp@subsup{a}{3}{\prime}}\end{array},\begin{array}{lll}{\mp@subsup{b}{1}{}}&{\mp@subsup{b}{2}{}}&{\mp@subsup{b}{3}{}}\end{array}->}\quad\begin{array}{l}{\mathrm{ Error using }-\mp@subsup{}{}{*}=}\\{\mathrm{ (Inner matrix dimensions must agree.)}}
```

>> a.*b

$$
\begin{array}{|lll}
a_{1} & a_{2} & a_{3}
\end{array}, \begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array} \rightarrow \begin{array}{lll}
a_{1} b_{1} & a_{2} b_{2} & a_{3} b_{3}
\end{array}=\left[a_{i} b_{i}\right]
$$

Element-by-element matrix product

- if element-by-element multiplication of two matrices of the same size is needed, use the ' . *'operator
- i.e. two cases of multiplication are distinguished
>>A*B
>>A*B

$$
\begin{array}{|ll|}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}, \begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \rightarrow \begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}
$$

>> A.*B
>> A.*B

$$
\begin{array}{|ll}
\hline A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}, \begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \rightarrow \begin{array}{|ll}
A_{11} B_{11} & A_{12} B_{12} \\
A_{21} B_{21} & A_{22} B_{22}
\end{array}
$$

- It is so called Hadamard product / element-wise product / Schur product: $\mathbf{A} \circ \mathbf{B}$

Element-wise operations \#1

- element-wise operations can be applied to vectors as well in Matlab. Element-wise operations can be usefully combined with vector functions
- it is possible, quite often, to eliminate 1 or even 2 for-loops!!!
- these operations are exceptionally efficient
\rightarrow allow the use of so called vectorization (see later)
- e.g.: $f(x)=\frac{10}{(x+1)} \tan (x)$,
$x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

```
>> x = -pi/4:pi/100:pi/4;
>>x = 10./(1+x).*tan(x);
>> plot(x, fx);
>> grid on;
```


Element-wise operations \#1

- evaluate functions $f_{1}(x)=\sin (x)$ of the variable $x \in[0,2 \pi]$

$$
\begin{aligned}
& f_{2}(x)=\cos ^{2}(x) \\
& f_{3}(x)=f_{1}(x)+f_{2}(x)
\end{aligned}
$$

- evaluate the functions in evenly spaced points of the interval, the spacing is $\Delta x=\pi / 20$
- for verification:

```
>> plot(x,f1, x,f2, x,f3),
```

- Matlab also enables symbolic solution (see later)

Element-wise operations \#2

- depict graphically following functional dependence in the interval

$$
x \in[0,5 \pi]
$$

- plot the result using following function

$$
f_{4}(x)=\frac{-\cos (3 x)}{\cos (x) \sin \left(x-\frac{\pi}{5}\right)-\pi}
$$

```
>> plot(x, f4);
```

- explain the difference in the way of
\square
\square $>A^{\prime} . * B$,
multiplication of matrices of the same size

Element-wise operations \#3

- evaluate the function $f(x, y)=x y, \quad x, y \in[0,2]$, use 101 evenly spaced points in both x and y
- the evaluation can be carried out either using vectors, matrix elementwise vectorization or using two for loops
- plot the result using $\operatorname{surf}(\mathrm{x}, \mathrm{y}, \mathrm{f})$
- when ready, try also $f(x, y)=x^{0.5} y^{2}$ on the same interval

Matrix operations

- construct block diagonal matrix: blkdiag

A_{11}	B_{11}
B_{12}	
B_{21}	B_{22}

$$
\begin{aligned}
& \gg A=1 ; B=\left[\begin{array}{lll}
2 & 3 ; & -4
\end{array}\right] \\
& \gg C=b l k d i a g(B, A) ;
\end{aligned}
$$

B_{11}	B_{12}
B_{21}	B_{22}
0	0
	0
	A_{11}

- arranging two matrices of the same size: cat

A_{11}	A_{12}				
A_{21}	A_{22}				
B_{11}	B_{12}				
B_{21}	B_{22}	\quad	$\mathrm{C}=\operatorname{cat}(2$,	A,	$\mathrm{B})$
:---	:---	:---	:---		
$\mathrm{C}=\operatorname{cat}(1$,	A	$\mathrm{B})$			
$\mathrm{C}=\operatorname{cat}(3$,	A,	$\mathrm{B})$	\(\left	\begin{array}{	ll

A_{21} \& A_{22} \& B_{21} \& B_{22}

A_{11} \& A_{12}

A_{21} \& A_{22}

\hline B_{11} \& B_{12}

B_{21} \& B_{22}

\hline\end{array}\right|\)| A_{11} | A_{12} | |
| :--- | :--- | :--- | :--- |
| A_{21} | A_{22} | B_{12} |
| | B_{21} | B_{22} |

Size of matrices and other structures

- it is often needed to know size of matrices and arrays in Matlab
- function size returns a vector giving the size of the matrix / array

```
>> A = randn (3,5);
>> d = size(A) % d = [3 5]
```

- function length returns largest dimension of an array
- i.e. length(A) $=\max ($ size(A))

```
>> A = randn (3,5,8);
>> e = length(A) % e = 8
```

- function ndims returns number of dimensions of a matrix / array
- i.e. ndims $(A)=$ length (size (A))

```
>> m = ndims(A) % m = 3
```

- function numel returns number of elements of a matrix / array

```
>> n = numel(A) % n = 120
```


Size of matrices and other structures

- create an arbitrary 3D array
- you can make use of the following commands :

```
>> A = rand(2+randi(10), 3+randi(5));
>> A(:,:,2) = flipud(fliplr(A)),
```

- and now:
- find out the size of A
- find out the number of elements of A
- find out the number of elements of A in the 'longest' dimension
- find out the number of dimensions of A

Data types in Matlab

- can be postponed for later ...

Name	size	Bytes	Class	Attributes
D	50×1	400	double	
DD	1×20	160	double	
Difx	20×20	3200	double	
Didy	20×20	3200	double	
Eps	1×1	8	double	
kA	20×20	3200	double	
L	1×1	8	double	
Leheck	20×20	3200	double	
N	1×1	8	double	
$\mathrm{N}+\mathrm{h}$	1×1	8	double	
OK	1×1	1	logical	
PR	20×20	3200	double	
Er	1×1	8	double	
SOL	20×20	400	logical	
Terose	1x1	4	single	
lam	1×1	8	double	
omina	20×20	3200	double	
psi	1×1	8	double	
type_of_connection	1×6	12	char	

```
>> class(type_of_connection)
ans =
```

char

Bonus: function gallery

- function enabling to create a vast set of matrices that can be used for Matlab code testing
- most of the matrices are special-purpose
- function gallery offers significant coding time reduction for advanced Matlab users
- see help gallery / doc gallery
- try for instance:

```
>> gallery('pei', 5, 4)
>> gallery('leslie', 10)
>> gallery('clement', 8)
```


Function why

- it is a must to try that one! :)
- try help why
- try to find out how many answers exist

Discussed functions

```
real, imag, cong, angle, complex
norm, cumsum
hypot
linspace, logspace
zeros, ones, eye, NaN, magic
rand, randn, randi
randperm
true, false
pascal, hankel, gallery
blkdiag, cat
diag, triu, tril,
fliplr, flipud, circshift
repmat, reshape
length, size, ndims, numel
sparse, full
grid on, grid off
figure, surf
complex numbers related functions
norm (of a matrix / vector), cummulative sum
square root of sum of squares (real / complex numbers)
vector generation - evenly spaced, linear / logarithmic scale
create matrix
matrix of random numbers with uniform or normal distribution, matrix
of random integers
vector containing a random permutation of numbers
create matrix (logical)
special purpose matrices
block diagonal matrix, groups several matrices into one
diagonal matrix, upper and lower triangular matrix
element swapping, circular shift
matrix operation (replication, reshaping)
length of a vector, size of a matrix, number of dim. and elements
sparse and full matrix operations
Turns grid of a graph on / off
opens new figure, 3D graph surf
```


Exercise \#1

- create matrix \mathbf{M} of size size $(M)=\left[\begin{array}{lll}3 & 4 & 2\end{array}\right]$ containing random numbers coming from uniform distribution on the interval [-0.5,7.5]

Exercise \#2

- Consider the operation a1^a2, is this operation is applicable to following cases?
- a1 - matrix, a2 - scalar
- a1 - matrix, a2 - matrix
- a1 - matrix, a2 - vector
- a1 - scalar, a2 - scalar
- a1 - scalar, a2 - matrix
- a1, a2 - matrix, a1.^a2
you can always create the matrices $a 1, a 2$ and make a test \ldots

Exercise \#3

$$
420 \mathrm{~s}
$$

- make corrections to the following piece of code to get values of the function $f(x)$ for 200 points on the interval $[0,1]$:

$$
f(x)=\frac{x^{2} \cos (\pi x)}{\left(x^{3}+1\right)(x+2)}
$$

- find out the value of the function for $x=1$ by direct accessing the vector
- what is the value of the function for $x=2$?
- to check, plot the graph of the function $f(x)$

```
>> % erroneous code
>> x = linspace(0, 1);
>> clear;
>> g= x^3+1; H = x+2;
>> y = cos xpi; z = x.^2;
>> f}=\mp@subsup{\textrm{Y}}{}{*}\textrm{Z}/\textrm{gh
```


Exercise \#4

- think over how many ways there are to calculate the length of the hypotenuse when two legs of a triangle are given
- make use of various Matlab operators and functions
- consider also the case where the legs are complex numbers

Exercise \#5

- A proton, carrying a charge of $Q=1.602 \cdot 10^{-19} \mathrm{C}$ and of a mass of $m=1.673 \cdot 10^{-31} \mathrm{~kg}$ enters a homogeneous magnetic and electric field in the direction of the z axis in the way that the proton follows a helical path; the initial velocity of the proton is $v_{0}=1 \cdot 10^{7} \mathrm{~m} / \mathrm{s}$. The intensity of the magnetic field is $B=0.1 \mathrm{~T}$, the intensity of the electric field is $E=1 \cdot 10^{5} \mathrm{~V} / \mathrm{m}$
- velocity of the proton along the z axis is $v=\frac{Q E}{m} t+v_{0}$
- where t is time, travelled distance along the z axis is $z=\frac{1}{2} \frac{Q E}{m} t^{2}+v_{0} t$
- radius of the helix is $\quad r=\frac{v m}{B Q}$
- frequency of orbiting the helix is $\quad f=\frac{v}{2 \pi r}$
- the x and y coordinates of the proton are $\quad x=r \cos (2 \pi f t), \quad y=r \sin (2 \pi f t)$

Exercise \#6

- plot the path of the proton in space in the time interval from 0 ns to 1 ns in 1001 points using function $\operatorname{comet} 3(\mathrm{x}, \mathrm{y}, \mathrm{z})$


```
>> clear; close all; clc;
>> % put your code here
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
>> % ...
```

```
>> comet3(x, y, z)
```


Thank you!

ver. 6.1 (03/10/2016) Miloslav Čapek, Pavel Valtr miloslav.capek@fel.cvut.cz Pavel.Valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors.

Document created as part of A0B17MTB course.

