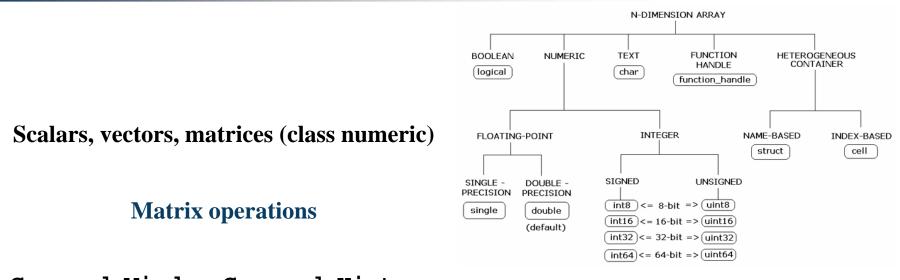
A0B17MTB - Matlab

Part #1


Miloslav Čapek

miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

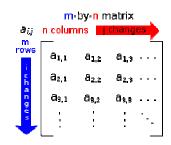
Department of Electromagnetic Field B2-626, Prague

Command Window, Command History

Saving and loading variables

Exercises

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz


A0B17MTB: Part #1

Data types

Matrices in Matlab

- matrix is a basic data structure in Matlab
- there are following types depending on size :
 - 1×1 (scalar)
 - $M \times 1$, or $1 \times N$ (vector)
 - M×N (matrix)
 - array (multidimensional matrices) $M \times N \times P \times Q \times R \times ...$

- can be complex
- can contain text as well (beware the length)

Matrix creation

- following techniques are available:
 - element-by-element entering (suitable for small matrices only)
 - colon notation ,,: " to define elements of a series
 - generation by built-in functions
 - generation of matrices in m-files
 - import and export from/to external files (.mat, .txt, .xls)

Matrix construction element-by-element

- test following commands to construct matrices by element enumeration
 - suitable for small matrices only

>> a1 = -1 $a_1 = a_2 = -1$ >> a2 = [-1] % brackets are redundant $\mathbf{v}_1 = (-1 \ 0 \ 1)$ >> v1 = [-1 0 1] $\mathbf{v}_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} > M1 = [-1 \ 0 \ 1; \ -2 \ 0 \ 2]$ >> M2 = [-1 -2; 0 0; 1 2]>> M3 = [[-1 -2]; [0 0]] % inner brackets are redundant $\mathbf{M}_{1} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \end{pmatrix}, \quad \mathbf{M}_{2} = \begin{pmatrix} -1 & -2 \\ 0 & 0 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{M}_{3} = \begin{pmatrix} -1 & -2 \\ 0 & 0 \end{pmatrix}$

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #1

3.10.2016 17:06

Matrix construction element-by-element

90 s

- construct following matrices:
 - matrix values are defined inside square brackets []
 - semicolon ,,; " separates individual rows of a matrix

$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Data types

• semicolon placed at the end of a command suppresses display of the output in Command Window

• when more than one command on the same line, coma is used to separate each command

>> a = 1, b = 5 >> a = 1; b = 5;

• note: it is possible to copy and paste code including ">>"

 $\mathbf{c} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{d} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

• "row" vs. "column" vektor

Matrix construction

7

A0B17MTB: **Part #1** Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Workspace browser

- new variables
- deleting / modification of existing variables
- saving / loading
- size, elements of variables
 - other information can be added
- fast data plotting option

 all operations can be carried out using Matlab functions that we learn later, e.g. min, max, size, length

Image: Constraint of the state of the s		Workspace		lice		□ * ×
A [-1,1;1,-2] 2x2 -2 1 B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1	L	1			assessment of the	405
a 1 ix1 1 1 b 5 lx1 5 5 c [1,0,0] 1x3 0 1		(I I I I I I I I I I I I I I I I I I I	1993/1091P	10000	1. 310 11	Max
a 1 ix1 1 1 b 5 lx1 5 5 c [1,0,0] 1x3 0 1	2	A				
b 5 1x1 5 5 c [1,0,0] 1x3 0 1	· /	B				
	/	a				
	/	b				
d [0;0;1] 3x1 0 1						
	and the second s	4				
		4 0 0 + 1	Stack: Base	No valid pic	ats for: A(1,1	
	b Illi 🕹 Iouble>) -
louble>	louble>	2) +
louble>	louble>	2) •
louble> 2 3 4 5 6 7 3 1	ioubie>	2) •
louble> 2 3 4 5 6 7 3 1	ioubie>	2) 🗸

A0B17MTB: Part #1 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Program flow

Workspace browser

- Workspace now contains variables A, B, a, b, c, d (from previous slides)
 - all variables in the base workspace are displayed
- variable ans contains the last result
 - can be used for calculation
 - overwritten by each command input!

>> 2*2, ans²

- try to edit variables A, a
 - by a Matlab command directly
 - by change of value in Workspace browser
- try to delete variables B, c

Name L	Value	Min	Max
A	[-1 1;1 -2]	-2	1
в	[1 2 3;4 5 6;7 8 9]	1	9
a	1	1	1
b	5	5	5
c	[100]	0	1
d	[0;0;1]	0	1

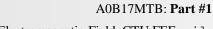
Basic math operators

- of several types:
 - arithmetic
 - matrix
 - vector
 - relational
 - logical
 - and other (to be mentioned later...)

- other operations using Matlab functions
 - complex conjugate,
 - sum, determinant, square root
 - and hundreds of other functions ...

+ addition

- subtraction
- * multiplication
- ^ power
- ' transpose
- \land left matrix division
- / right matrix division
- dot notation



10/3/2016 5:06 PM

Operator Precedence in Matlab

- according to the following table
 - see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

	1	parentheses	()					
ity	2	transpose, power	,	• '	^	.^		
higher priority	3	unary plus, unary minus, logical negation	+	-	~			
	4	multiplication, division	*	•*	/	\setminus	./	.\
	5	addition, subtraction	+	-				
	6	colon operator	:					
	7	relational operators	<	>	<=	>=	==	~=
	8	logical AND (element-wise)	&					
lower priority	9	logical OR (element-wise)						
	10	logical AND (short-circuit)	&&					
¥	11	logical OR (short-circuit)						

11

Basic math operators

200 s

- type in following commands
 - zero can be omitted with a decimal number beginning with zero (not recommended!)

>> a3 = -2/4 >> a4 = -0.5 >> a5 = -.5

- what is the difference between a3, a4, a5?
- beware the precedence of operators (we see in the next slides):

>> 3*5*6
>> a1 = 15
>> a2 = 10;
>> a2/a3
>> a2/a3*a4
>> a2/(a3*a4)

- explain the difference between a2/a3*a4 and a2/(a3*a4)
- verify the rules of operator precedence from the previous slide

A0B17MTB: Part #1
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

3.10.2016 17:06

Lengthy commands in Matlab

- it is suitable to structure command blocks for clarity:
 - next line: SHIFT+ENTER

>> A = [1 1 1]; B = [2 2 2]; % SHIFT+ENTER C = [2 3 2];

- three dots notation
 - for continuation of the same command on the next line
 - compare results:

Basic math functions

• math functions in Matlab are generally divided in three groups:

• <u>scalar</u>

- function operates over individual elements of a matrix
- e.g.: sin, sqrt, log, factorial

• <u>vector</u>

- Function operates over individual rows/columns of a matrix
- e.g.: sum, max

• <u>matrix</u>

- function operates over whole matrix
- e.g.: det, trace

Basic math functions #1

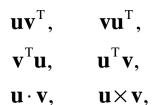
600 s

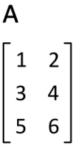
- using Matlab help, calculate following expression: $a\sin^2(\alpha) + a\cos^2(\alpha) a$
 - use numerical values you choose

• verify following logarithmic identity:

$$\log_{10}(a) + \log_{10}(b) - \log_{10}(ab) = 0$$

• find sum of all elements in individual rows of the following matrix


$$\mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ 6 & 7 & 8 & 9 \\ 0.2 & 0.3 & 0.4 & 0.5 \end{pmatrix}$$


A0B17MTB: **Part #1** Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Basic math functions #2

- 600 s
- assume following vectors \mathbf{u}, \mathbf{v} : $\mathbf{u} = (1 \ 2 \ 3), \ \mathbf{v} = (3 \ 2 \ 1)$
 - calculate

- following functions are needed:
 - transpose of a matrix
 - dot / scalar product
 - cross product
- what is the result of the above mentioned operations?

wikipedia.org

420 s

• use following code and round the resulting number to:

(a) nearest integer

• (b) nearest integer greater than r

- (c) nearest integer lower than r
- (d) zero
- (e) zero with precision of 2 decimal digits
- find remainder after r is divided by 0.1
 - modulus vs. remainder after division

A0B17MTB: Part #1

Matrix division in Matlab

- matrix operation
- two cases are distinguished: <u>left</u> division ("\") and <u>right</u> division ("/")
 - A is invertible (regular), b is row (column) vector

$\mathbf{A}\mathbf{x} = \mathbf{b}$		$\mathbf{x}\mathbf{A} = \mathbf{b}$
	solution to linear	
	system of equations	
$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$		$\mathbf{x} = \mathbf{b}\mathbf{A}^{-1}$

>> x = b / A

18

Basic math functions #4

500 s

- find the sum of diagonal elements (trace of a matrix) of the matrix **T** with elements coming from normal distribution with mean equal to 10 and standard deviation equal to 4 >> T = 10 + 4*randn(7, 7);
- find determinant of matrix **U**

$$\mathbf{U} = \begin{pmatrix} 1 & 2 & \frac{17}{81} \\ 0 & 2 & 0 \\ 0 & -2 & -1 \\ & & & \end{pmatrix}$$

• solve the linear system of equations

$$x_{1} + 2x_{2} + 3x_{3} = 6$$

$$4x_{1} + 5x_{2} + 6x_{3} = 15$$

$$7x_{1} + 8x_{2} + x_{3} = 16$$

Ax = **b**
x = **A**⁻¹**b**

(·))) (·)

A0B17MTB: Part #1

Matlab commands

- Matlab is cAsE sEnSiTiVe
 - almost entirely, with certain exceptions (properties of graphic objects, ...)
 - pay attention to typos and variable names (see later)
 - new versions of Matlab offer certain options

```
>> AA = [1 1 1]
>> Aa
```

- beware of different syntax in Mathematica
 - following syntax is incorrect both in Matlab and Mathematica:

>> Sin(pi/2) % function names start with lower case
>> cos[pi/3] % function input is in parentheses ()

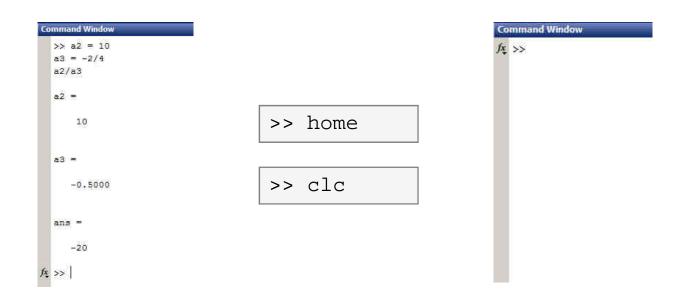
3.10.2016 17:06

Predefined values in Matlab

- Matlab contains several predefined values
 - eps precision of single/double numbers
 - eps determines the shortest distance between two single/double numbers
 - ans most recent answer
 - NaN not a number (every expression containing NaN results is NaN)
 - NaN can be used advantageously in some cases
 - Inf *infinite number* (variable Inf can be used in calculation :))
 - pay attention to Inf propagation throughout your code (use allowed operations only)
 - i, j complex unit
 - they are all basically functions (without input parameters)
 - check results of the following expressions:

>>	t1	=	10,	/ 0		%	t1	=	Inf
>>	t2	=	0/0)		%	t2	=	NaN
>>	t3	=	t1,	*5		%	t3	=	Inf
>>	t4	=	t1	+	t2	%	t4	=	NaN

• pi, intmin, intmax, realmin, realmax, ... (functions)



Workspace - output deletion #1

• to clean (erase) the command window:

>> home % cursor (>>) is shifted to the top-left position
>> clc % Command Window is erased

• try and compare

Workspace - output deletion #2

• to clean one (or more) variable, use clear

>> clear	% whole Workspace is deleted
>> clear XX	% variable XX is deleted
>> clear XX YY	% variables XX and YY are deleted
>> clear <mark>z*</mark>	<pre>% everything starting with `z' is deleted</pre>

- clear clear has a number other options (graphics, I/O)
- try to delete selected variables in workspace

Workspace - output deletion #3

• to delete all variables except for one (or several):

```
>> clearvars -except a3 % clears everything except a3
```

• further information in doc clear, doc clearvars

24

Command History window

- Command History window stores all commands from the Command Window
- Command History accessible though (\uparrow or \downarrow)
- it is possible to filter out past commands by

• e.g. >> A = [
$$+\uparrow$$

- It is possible to copy-and-paste entire Command History
 - SHIFT / CTRL / CTRL+A \rightarrow CTRL+C

ommand History U = [1 2 17/81; 0 0 -2 -1];	0 2 0;	
det (U)		
clear, clc		
T = 10 + 4*randn	(10,10);	
trace (T)		
U = [1 2 17/81; 0	20;	
0 -2 -1];	Evaluate Selection	F9
det (U)	Create Script	F9
A = [1 2 3; 4 5	Create Shortcut	
$b = [6 \ 15 \ 16]';$	Profile Code	
x = inv(A) *b;	Cut	Ctrl+X
$x = A \setminus b;$	Сору	Ctrl+C
t1 = 10/0 % t	Delete Selection	Delete
$t_2 = 0/0$ § t	Delete to Selection	
t3 = t1*5 % t	Select All	Ctrl+A
t4 = t1 + t2	Find	Ctrl+F
POPPARTIES (2019) 10 1030/20 20 101	Print	Ctrl+P
home % vrátí pro	Print Selection	
clc 👌 vymaže Com	Page Setup	
hD.	Clear Command Histo	ey.

• later on, we will work with scripts and functions to store all the commands/code

A0B17MTB: Part #1

Variables storing and loading

• existing variables in Matlab Workspace can be stored on disk

```
>> save % stores all variables in matlab.mat in current folder
>> save task1 % stores all variables in task1.mat
>> save task1 a b c % stores variables "a", "b" and "c" in task1.mat
```

- CTRL+S in Command Window / Command History
- loading variables is analogical

```
>> load % loads matlab.mat in current folder
>> load task1 % loads all variables from task1.mat
>> load task1 a b c % loads variables "a", "b" and "c" from task1.mat
```

• alternatively, drag & drop the file from Current Folder in Command Window

180 s

Storing history and variables

- save today's Command History
 - use *.txt file
- store all variables from Workspace in Data.mat

• try to store selected variables only

• clear Workspace and load above mentioned files

• both storing and loading can be carried out using mouse!!

A0B17MTB: Part #1

.mat file structure

- .mat files of the 7.3 version have the HDF5 format
 - HDF = Hierarchical Data Format
 - enable to store variables exceeding 2GB (64-bit system)
 - scientific format for data storing
- advantages of accessing HDF directly for certain applications:
 - speed
 - it is possible to define structure of the file and the stored data
 - Matlab *High-Level* functions and HDF *Low-Level* functions are available
- for more detailed information see:
 - MATLAB → Data and File Management → Data Import and Export → Scientific Data

Variable names #1

- max. 63 characters starting with a letter (>> namelengthmax)
 - underscore is allowed in the variable name ,,_" (not at the beginning!)
 - characters not allowed are colon ,, : ", hyphen ,, " and others
- lowercase letters in the names of scalars and variables (a = 17.59;)
- matrix names usually start with a capital letter (A = [...])
 - clear huge matrices after they are used (clear ..., memory')
- iteration variables, variables used in for cycles usually named m, n, k etc.
 - it is advisable to avoid i, j (complex unit)
- chose the names to correspond to the purpose of the variable
- avoid, if possible, standalone letter 'l' (to be confused with 1) and predefined variables in Matlab environment

Variable names #2

• exceeding the maximum variable's name length :

>> a01234567890123450

a01234567890123456789012345678901234567890123456789012345678901 =

10

Variable names #3

• samples of valid variable names

a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX

• samples of invalid variable names

lvar	%	starts with a number (not possible in Matlabu)
matrix A	%	contains space
coef.a	%	possible only if coef is of type 'struct'
Test-1	%	algebraic expression: ans = Test - 1
f(y)	%	makes sense when using symbolic expressions

- samples of valid numbers in Matlab
 - pay attention to miss inserted spaces after exponent and imaginary unit

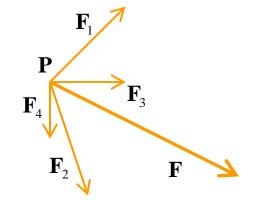
3, -66, +0.0015, .015, 1.6025e-10, 3i, 3.17e5i, -3.51j

Discussed functions

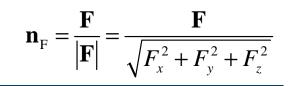
trigonometric functions
square root
largest element of column of a matrix; largest element of a vector
sum of elements of column of a matrix; sum of elements of a vector
natural logarithm, logarithm with base 10
factorial
determinant of a (square) matrix, trace of a (square) matrix
transpose
scalar product, vector product
invers of a matrix
rounding
remainder after division
random number generation
storing, loading of variables
• deleting variables and functions, deleting variables only
command prompt shift, clears output
returns last answer, numerical accuracy of Matlab •

3.1	0.2	01	61	7:	06

32



180 s


• forces were localized at point **P** in (x-y) plane:

$$\mathbf{F}_{1} = \begin{pmatrix} 2 & 2 \end{pmatrix} \qquad \mathbf{F}_{3} = \begin{pmatrix} 2 & 0 \end{pmatrix} \\ \mathbf{F}_{2} = \begin{pmatrix} 1 & -3 \end{pmatrix} \qquad \mathbf{F}_{4} = \begin{pmatrix} 0 & -1.5 \end{pmatrix}$$

• what is the direction of the resultant force **F**?

• normalize the resulting vector

3.10.2016 17:06

A0B17MTB: **Part #1** Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

240 s

• type-in following commands:

```
>> clear, clc;
>> w1 = [1 2 3], w2 = [-2 -3 -4]',
>> w3 = [-2; -3; -4],
>> w4 = w2 - w3, w5 = w2 - w1
```

- compare differences
- the error of calculating w5 resides in what?
- try also

>> w1*3, w1 - 3, >> w1 + [5 5 5], >> w6 = 5*w1 - [3 5 6] - w2,

- calculate the norm (magnitude) of vector w1
 - try more options

$$\hat{\mathbf{w}}_1 = \frac{\mathbf{w}_1}{|\mathbf{w}_1|}$$

• how to modify the calculation in the case of a complex vector?

A0B17MTB: **Part #1** Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

3.10.2016 17:06

Exercise #3

- calculate roots of the quadratic function
 - rearrange the terms of the function first

$$2x^{2} + 5x + 3 = 0, \implies a = 2, b = 5, c = 3$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 24}}{4}$$
$$x_{1} = -1, \quad x_{2} = -\frac{3}{2}$$

• Matlab provides particular function for calculation of roots of a function, try to search it out

 $-2x^2 - 5x = 3$

3.10.2016 17:06

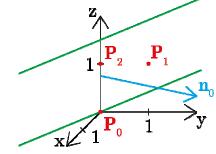
180 s

Exercise #4

 \mathbf{Z}

хЦ

300 s


- consider matrices (prepare matrices for later use)
 - rotating by angle α in *x*-*z* plane

$$\mathbf{R} = \begin{pmatrix} \cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & 1 & 0 \\ \sin(\alpha) & 0 & \cos(\alpha) \end{pmatrix}$$

• mirroring across plane 1x + 2y + 0z = 0• use Householder's transform $\mathbf{P} = \mathbf{I} - 2\mathbf{n}_0 \mathbf{n}_0^{\mathrm{T}}$

$$\mathbf{n}_{0} = \frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{|\mathbf{v}_{1} \times \mathbf{v}_{2}|} \qquad \mathbf{P}_{1} = [-2; 1; 0]$$
$$\mathbf{P}_{2} = [0; 0; 1]$$
$$\mathbf{v}_{k} = (\mathbf{P}_{k} - \mathbf{0}) \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{y}_{0} \\ \mathbf{z}_{0} \end{pmatrix}, \quad k \in \{1, 2\}$$

 $-2\mathbf{n}_0\mathbf{n}_0^{\mathrm{T}}$

3.10.2016 17:06

A0B17MTB: **Part #1**

36

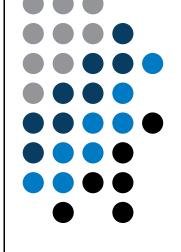
• use rotation matrix **R** to rotate vector $\mathbf{k} = [1; 0; 0]$ by angle $\alpha = \pi/2$

$$\mathbf{m} = \mathbf{R}\mathbf{k} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^{\mathrm{T}}$$

• use reflection matrix **P** across plane: 1x + 2y + 0z = 0

$$\mathbf{u}_1 = \mathbf{n}_0, \quad \mathbf{u}_2 = \begin{pmatrix} \frac{5}{2} & 0 & 3 \end{pmatrix}^T$$
$$\mathbf{m}_1 = \mathbf{P}\mathbf{u}_1 = -\mathbf{n}_0, \quad \mathbf{m}_2 = \mathbf{P}\mathbf{u}_2 = \begin{pmatrix} \frac{3}{2} & -2 & 3 \end{pmatrix}^T$$

- calculate the determinant of matrices **R** and **P**
 - can you interpret the results?



180 s

A0B17MTB: Part #1

37

Thank you!

ver. 6.1 (03/10/2016) Miloslav Čapek (C), Pavel Valtr (E) miloslav.capek@fel.cvut.cz Pavel.Valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors. Document created as part of A0B17MTB course.