
A0B17MTB – Matlab

Part #4

Miloslav Čapek
miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field
B2-626, Prague

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Patr #425.10.2015 12:00

2

Solution to exercise #3 from last lecture

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Patr #425.10.2015 12:00

3

Solution to exercise #5 from last lecture

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

4

Learning how to …

Relational and logical operators

Cycles

Program branching #1

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

5

Cell mode in Matlab Editor

� cells enable to separate the code into smaller logically compact parts
� separator:%%

� the separation is visual only, but it is possible to execute a single cell -
shortcut CTRL+ENTER

� in the older versions of Matlab, it is usually necessary to activate the
cell mode

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

6

Cell mode in Matlab Editor

� split previous script (loanRepayment.m) into separate parts
� use the (cell) separator%%

240 s ↑

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

7

Data in scripts

� scripts can use data that has appeared in Workspace

� variables remain in the Workspace even after the calculation is
finished

� operations on data in scripts are performed in the base Workspace

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

8

Naming conventions of scripts and functions

� names of scripts and functions
� max. number of characters is 63 (additional characters are ignored)

� naming restrictions similar to variable names apply

� choose names describing what the particular function calculates

� avoid existing names as the new script is called instead of an existing built-in
function (overloading can occur)

� more information:
� http://www.mathworks.com/matlabcentral/fileexchange

/2529-matlab-programming-style-guidelines

� in the case you want to apply vector functions row-wise
� check whether the function enables calculation in the other dimension (max)
� transpose your matrix
� some of the functions work both column-wise and row-wise (sort ×

sortrows)

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

9

startup.m script

� scriptstartup.m

� always executed at Matlab start-up

� it is possible to put your predefined constants and other operations to be
executed (loaded) at Matlab start-up

� location (use>> which startup):
� ...\Matlab\R201Xx\toolbox\local\startup.m

� change of base folder after Matlab start-up :

%% script startup.m in ..\Matlab\Rxxx\toolbox\local\
clc;
disp('Workspace is changing to:');
cd('d:\Data\Matlab\');
cd
disp(datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM'));

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

10

matlabrc.m script

� executed at Matlab start-up (or manually executed:>> matlabrc)

� contains some basic definitions, e.g.
� figure size, set-up of some graphic elements

� sets Matlab path (see later)

� and others

� in the case of a multi-license it is possible to insert a message in the
script that will be displayed to all users at the start-up

� location (use>> which matlabrc):
� ...\Matlab\R201Xx\toolbox\local\matlabrc.m

� last of all,startup.m is called (if existing)

� matlabrc.m is to be modified only in the case of absolute urgency!

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

11

Relational operators

� to inquire, to compare, whether ‘something’ is greater than, lesser than,
equal to etc.

� the result of the comparison is always either
� positive (true), logical one „1“

� negative (false), logical zero „0“

� all relational operators are vector-wise
� it is possible to compare as well vectors vs. vectors, matrices vs. matrices, …

� often in combination with logical operators (see later)
� more relational operators applied to a combination of expressions

Operators

> greater than

>= greater than or equal to

< lesser than

<= lesser than or equal to

== equal to

~= not equal to

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

12

Relational operators

� having the vector , find elements ofG that
are
� greater thanπ

� lesser or equal toπ

� not equal toπ

� try similar operations for as well

� try to use relational operators in the case of a matrix and scalar as well

� find out whetherV ≥ U:

Operators

3
2

2 2

π π π π =  
 

G

T=H G

300 s ↑

()
()

1 0

1 1 1 1

π π= −

=

V

U

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

13

Relational operators

� find out results of following relations
� try to interpret the results

Operators

>> 2 > 1 & 0 % ???

>> r = 1/2;
>> 0 < r < 1 % ???

>> (1 > A) <= true

200 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

14

Logical operators

� to enquire, to find out, whether particular condition is fulfilled

� the result is always either
� positive (true), logical one „1“

� negative (false), logical zero „0“

� all , any is used to convert logical array into a scalar

� Matlab interprets any numerical value except0 astrue

� all logical operators are vector-wise
� it is possible to compare as well vectors vs. vectors, matrices vs. matrices, …

� functionsis* extend possibilities of logical enquiring
� we see later

& and

| or

~ not

xor

all

any

Operators

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

15

Logical operators – application

� assume a vector of 10 random numbers ranging from -10 to 10

� following command returnstrue for elements fulfilling the condition:

� following command returns values of those elements fulfilling the condition
(logical indexing):

� following command puts value of -5 to the position of elements fulfilling the
condition :

� following command sets value of the elements in the range from -5 to 5 equal
to zero (opposite to tresholding):

� tresholding function (values below -5 sets equal to -5, values above 5 sets
equal to 5):

>> a < -5 % relation operator

>> a(a < -5)

>> a(a < -5) = -5

>> a(a > -5 & a < 5) = 0

>> a(a < -5 | a > 5) = sign(a(a < -5 | a > 5))*5

>> a = 20*rand(10, 1) - 10

Operators

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

16

Logical operators

� determine which of the elements of the vector

� are equal toπ or are equal to 2π
� pay attention to the type of the result (= logical valuestrue / false)

� are greater thanπ/2 and at the same time are not equal 2π

� elements from the previous condition add to matrix A

3
2

2 2

π π π π =  
 

A

420 s ↑

Operators

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

17

Logical operators: &&, ||

� in the case we need to compare scalar values only then "short-circuited"
evaluation can be used

� evaluation keeps on going till a point where it makes no senseto continue
� i.e. when evaluating

… no problems with undefined variablesc , d, because the evaluation is
terminated earlier

� however:
� terminated with error …

>> clear; clc;
>> a = true;
>> b = false;
>> a && b && c && d

>> clear; clc;
>> a = true;
>> b = true;
>> a && b && c && d

Operators

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

18

Logical operators

� create a row vector in the interval from 1 to 20 with step of 3
� create a the vector filled with elements from the previous vector that are

greater than 10 and at the same time smaller than 16; use logical operators

150 s ↑

Operators

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

19

Logical operators

� create matrixA = magic(3) and find out using functionsall andany

� in which columns all elements are greater than 2

� in which rows at least one element is greater than or equal to 8

� whether the matrix A contains positive numbers only

240 s ↑

Operators

8 1 6

3 5 7

4 9 2

 
 =  
 
 

A

()
0 1 1

any 1 1 0 1 1 1 ,

0 1 1

 
  = 
 
 

()
0 1 1

all 1 1 0 0 1 0 ,

0 1 1

 
  = 
 
 

()
0 1 1

any all 1 1 0 any 0 1 0 1

0 1 1

  
   = =  

  
  

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

20

Logical operators

� find out the result of following operation and interpret it

� test whether variableb is not equal to zero and then test whether at the
same timea / b > 3
� following operation tests whether both conditions are fulfilled while

avoiding division by zero!

Operators

>> ~(~[1 2 0 -2 0])

240 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

21

Matrix indexation using own values

� create matrixA

� first think about what will be the result of the following operation and
only then carry it out

� does the result correspond to what you expected?

� can you explain why the result looks the way it looks?
� notice the interesting mathematical properties of the matrixA andB

� are you able to estimate the evolution?,C = B(B)

� try similar process forN = 3 or N = 5

Matrix operations

300 s ↑

>> N = 4;
>> A = magic(N)

>> B = A(A)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

22

Program branching – loops

� repeating certain operation multiple-times, one of the basic
programming techniques

� There are 2 types of cycles in Matlabu:
� for – the most used one, number of repetitions is known in advance

� while – condition is known ensuring cycle (dis)continuation as long as it
remains true

� essential programing principles to be observed:
� memory allocation (matrix-related) of sufficient size /see later.../

� cycles should be properly terminated /see later.../
� To ensure terminating condition withwhile cycle /see later.../

� frequently is possible to modify the array (1D→ 2D, 2D→ 3D using
functionrepmat and carry out a matrix-wise operation, under certain
conditions the vectorized code is faster and more understandable,
possibility of utilization of GPU)

� we always ask the question: is a cycle really necessary?

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

23

for loop

� for loop is applied to known number of repetitions of a group of
commands

� expression is a vector / matrix; columns of this vector / matrix are
successively assigned tom/ n

� frequently, expression is generated usinglinspace or using
„ : “, with the help oflength , size , etc.

� instead ofmit is possible to use more relevant names likemPoints ,
mRows, mSymbols , …
� for clarity, it is suitable to use e.g.mXXpro rows andnXX for columns

Program flow

for m = expression
commands

end

for m = magic(4)
m

end

for n = 1:4
n

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

24

Loops #1

� create a script to calculate factorialN!
� use a cycle, verify your result using Matlabfactorial function

� can you come up with other solutions? (e.g. using vectorising…)

� compare all possibilities for decimal inputN as well

Program flow

400 s ↑

>> factorial(N)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

25

Memory allocation

� allocation can prevent perpetual increase of the size of a variable
� Code Analyser (M-Lint) will notify you about the possibility of allocation

by underlining the matrix's name

� whenever you know the size of a variable, allocate!
� sometimes, it pays off to allocate even when the final size isnot known - then

the worst-case scenario size of a matrix is allocated and then the size of the
matrix is reduced

� allocate the variables of the largest size first, then the smaller ones

� example:
� try…

Program flow

%% WITHOUT allocation
tic;
for m = 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.45s

%% WITH allocation
tic;
A = zeros(1,1e7);
for m = 1:1e7

A(m) = m + m;
end
toc;
% computed in 0.06s

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

26

while loop

� keeps on executing commands contained in the body of the cycle
(commands) depending on a logical condition

� keeps on executing commands as long as all elements of the expression
(condition can be a multidimensional matrix) are non-zero
� the condition is converted to a relational expression, i.e. till all elementsaretrue

� logical and relational operators are often used for condition testing

� if condition is not a scalar, it can be reduced using functionsany or all

Program flow

while condition
commands

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

27

Typical application of loops
Program flow

%% script generates N experiments with M throws with a die
close all ; clear all ; clc;

Mthrows = 1e3;
Ntimes = 1e2;
Results = NaN(Mthrows, Ntimes);
for mThrow = 1:Mthrows % however, can be even further vectorized!

Results(mThrow, :) = round(rand(1, Ntimes)); % vectorized
end

%% script finds out the number of lines in a file
fileName = 'sin.m' ;
fid = fopen(fileName, 'r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
count = count + 1;

end
disp(['lines:' num2str(count)])
fclose(fid);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

28

Loops #2

� calculate the sum of integers from 1 to 100 usingwhile cycle
� apply any approach to solve the task, but usewhile cycle

� are you able to come up with another solution (using a Matlab function
and without cycle)?

Program flow

360 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

29

while cycle – infinite loop

� pay attention to conditions in while cycle that are always fulfilled ⇒
danger of infinite loop
� mostly, not always however(!!) it is a semantic error

� trivial, but good example of a code…

… that „never“ ends (shortcut to terminate: CTRL+C)

Program flow

while 1 == 1
disp('ok');

end

while true
disp('ok');

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

30

Interchange of an index an complex unit

� be careful not to confuse complex unit (i , j) for cycle index
� try to avoid usingi andj as an index

� overloading can occur (applies generally, e.g.>> sum = 2 overloads the
sum function)

� find out the difference in the following pieces of code:

� all the commands, in principle, can be written as one line

� usually less understandable, not even suitable from the point of view of
the speed of the code

Program flow

A = 0;
for i = 1:10

A = A + 1i;
end

A = 0;
for i = 1:10

A = A + i;
end

A = 0;
for i = 1:10

A = A + j;
end

A = 0; for i = 1:10, A = A + 1i; end ,

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

31

Nested loops, loop combining

� quite frequently there is a need for nested loops
� consider vectorising instead

� consider loop type

� loop nesting usually rapidly increases computational demands

Program flow

%% script generates N experiments with M throws with a die
close all ; clear all ; clc;

Mthrows = 1e3;
Ntimes = 1e2;
Results = NaN(Mthrows, Ntimes);
for mThrow = 1:Mthrows

for nExperiment = 1:Ntimes % not vectorized (30 times slower!!)
Results(mThrow, nExperiment) = round(rand(1));

end
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #4

� fill in the matrix using loops

� consider , allocate matrix first

� create a new script

� to plot the matrixA use for instance the functionpcolor()

25.10.2015 12:00

32

Loops #3
Program flow

600 s ↑

(),
4 2

mn m
m n

n
= +A

{ } { }1, ,100 , 1, ,20m n∈ … ∈ …

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

33

Loops #4
Program flow

600 s ↑

� in the previous task the loops can be avoided entirely by using vectorising
� it is possible to usemeshgrid function to prepare the matrices needed

� meshgrid can be used for 3D arrays as well!!

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #4

for visualization inside the loop use following piece of code:

% ... your code
figure(1);
plot(x,real(I));
axis([x(1) x(end) -1 1]);
pause(0.1);

% ... your code

25.10.2015 12:00

34

Loops #5

� visualize current distribution of a dipole antenna described as

� in the interval choose N = 101

Program flow

600 s ↑

() () () ()0
0 0 0

jI , I e , I cos , 2tx t x x xω ω π− = ==

()0,4 , ,
2 2

t x
π ππ  ∈ ∈ − 

 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

35

Loops #6

� try to write moving average code applied to following function

wherer(x) is represented by function of uniform distribution (rand())
� use following parameters

� and then plot:

� try to make the code more efficient

Program flow

600 s ↑

() () () ()2f sin cos 0.1 ,x x x r x= +

clear; clc;
signalSize = 1e3;
x = linspace(0, 4*pi, signalSize);
f = sin(x).^2.*cos(x) + 0.1*rand(1, signalSize);
windowSize = 50;
% your code ...

plot(x, f, x, my_averaged);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

36

Loops #7

� for comparison it is possible to use Matlab built-in function filter

� check how the result is influenced by parameterwindowSize

Program flow

600 s ↑

windowSize = 150;windowSize = 15;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

37

break, continue

� functionbreak enables to terminate execution of the loop

� functioncontinue passes control to next iteration of the loop

Program flow

% another code ...
for k = 1:length(A)

if A(k) > threshold
break;

end
% another code ...

end

% another code ...
for k = 1:length(A)

if A(k) > threshold
continue;

end
% another code ...

end

if (true)

if (true)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

38

Loops vs. vectorizing #1

� since Matlab 6.5 there are two powerful hidden tools available
� Just-In-Time accelerator (JIT accelerator)

� Real-Time Type Analysis (RTTA)

� JIT enables partial compilation of code segments
� precompiled loops are even faster than vectorizing

� following rules have to be observed with respect to loops:
� scalar index to be used withfor loop

� only built-in functions are called inside the body offor loop

� the loop operates with scalar values only

� RTTA assumes the same data types as during the previous course of
the code - significant speed up for standartized calculations
� when measuring speed of the code, it is necessary to carry out so called

warm-up (first run the code 2 or 3 times)

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

39

Loops vs. vectorizing #2

� the motivation for introduction of JIT was to catch up with 3.
generation languages
� when fully utilized, JIT's computation time is comparable to that of C or

Fortran

� highest efficiency (the highest speedup) in particular
� when loops operate with scalar data

� when no user-defined functions are called (i.e. only build-in functions are
called)

� when each line of the loop uses JIT

� as the result, some parts of the code don't have to vectorised(or
should not even be!)

� the whole topic is more complex (and simplified here)
� for more details seeJIT_accel_Matlab.pdf at the webpage of this

course

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

40

Loops vs. vectorizing #3

� previous statement will be verified using a

simple code - filling a band matrix

� conditions for using JIT are fulfilled …
� working with scalars only, calling built-in

functions only

� filling up the matrix usingfor loops is faster!
� try it yourself…

Program flow

clear; clc;
N = 5e3;
mat = NaN(N, N);
tic,
for n1=1:N

for n2=1:N
mat(n1, n2)=0;

end
end
for n1 = 1:N

mat(n1, n1)=1;
end
for n1 = 1:(N-1)

mat(n1, n1+1)=2;
end
for n1 = 2:N

mat(n1, n1-1)=3;
end
toc,
% computed in 0.52s
(2015b)

clear; clc;
N = 5e3;

tic,
mat = diag(ones(N, 1)) + ...

2*diag(ones(N-1, 1), 1) + ...
3*diag(ones(N-1, 1), -1);

toc,
% computed in 0.18s (2015b)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

41

Program branching

� if it is needed to branch program (execute certain part of code
depending on whether a condition is fulfilled), there are two basic
ways:
� if – elseif – else – end

� switch – case – otherwise – end

Program flow

if condition
commands

elseif condition
commands

elseif condition
commands

else
commands

end

switch variable
case value1

commands
case {value2a, value2b, ...}

commands
case ...

commands
otherwise

commands
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

42

if vs. switch
Program flow

if-elseif-else-end switch-otherwise-end

it is possible to create very complex structure
(&& / ||)

simple choice of many options

strcmp is used to compare strings of various
lengths

test strings directly

test equality / inequality test equality only

great deal of logical expressions is needed in
the case of testing many options

enables to easily test one of many options
using {}

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

43

Program branching – if / else / elseif

� the most probable option should immediately follow theif statement

� only theif part is obligatory

� the else part is carried out only in the case where other conditions
are not fulfilled

� if a M×N matrix is part of the condition, the condition is fulfilled only
in the case it is fulfilled for each element of the matrix

� the condition may contain calling a function etc.
� if conditions may be nested

Program flow

c = randi(1e2);
if mod(c, 2)

disp('c is odd');
elseif c > 10

disp('even, >10');
end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

44

Program branching – if / else / elseif

� generate random numbers
� save the numbers in matricesNeq and Pos depending on whether

each number is negative or positive; usefor cycle, if–else
statement and indexing for storing values ofr

� pay attention to grownth in size of mtricesPos andNeq – how to solve
the problem?

� can you come up with a more elegant solution? (for cycle is not
always necessary)

Program flow

400 s ↑
r = 2*rand(8, 1)-1;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

45

Program branching – if / else / elseif

� write a script generating a complex number and determining to what
quadrant the complex number belongs to

Program flow

500 s ↑

{z}ℜ

{z}ℑ

0

.I.II

.III .IV

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

46

Discussed functions

edit open Matlab Editor ●

disp, pause display result in command line, pauses code execution ●

num2str conversion from datatype numeric to char ●

for-end, while-end loop ●

factorial calculate factorial

break, continue terminates loop execution, passes control to loop's next iteration

and, or, not, xor functions overloading logical operators

all, any evaluation of logical arrays („all of“, „at least one of“)

sign signum function

if-elseif-else-end branching statement ●

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

47

Exercise #1

� recall the signal from lecture 3
� try again to limit the signal by valuessmin a smax

� use relational operators (> / <) and logical indexing (s(a>b) = c)
instead of functionsmax, min

� solve the task item-by-item

360 s ↑

N = 5; V = 40;
t = linspace(0, N, N*V);
s_t = randn(1, N*V) + ...
sqrt(2*pi)*sin(2*pi*t);

()
()
()

()

min min

p max max

jinak

>

s s t s

t s s ts s

s t

⇔ <
= ⇔

…


min

max

9

10

2

s

s
π

= −

=

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

48

Exercise #2

� draft a script to calculate values of Fibonacci sequence up to certain
valuelimit

� have you come across this sequence already?

� if not, find its definition

� implementation:
� what kind of loop you use (if any)?

� what matrices / vectors do you allocate?

� plot the resulting series using
function plot

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #4

%% fibonacci sequence
f = [0 1]; % first two members
n = 1; % index for series generation
limit = 1000;
while f(n) + f(n+1) < limit

f(n+2) = f(n) + f(n+1);
n = n + 1;

end
plot(f);

25.10.2015 12:00

49

Exercise #3

� rate of reproduction of rabbits:

� try to find out the relation of the series

to the value of golden ratio

� try to calculate it:

240 s ↑

5
1.61

1
8033

2
ϕ = ≈+ …

number of elements [-]

va
lu

e
[-

]

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

50

Exercise #4

� consider following matrix:

� write a condition testing whether all elements ofA are positive and at
the same time all elements of the first row are integers
� if the condition is fulfilled display the result usingdisp

300 s ↑
1 1 2

2 3 5

 
=  
 

A

� compare with

� what is the difference?

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #410/25/2015 12:00 PM

51

Exercise #5

� try to determine the density of prime numbers
� examine the functionprimes generating prime numbers

� for the orders 101 – 107 determine the primes density (i.e. the number of
primes up to 10, to 100, …, to 107)

� outline the dependence using plot

� use logarithmic scale
(function loglog)
� how does the plot change?

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

52

Exercise #6

� did you use loop?

� is it advantageous (necessary) to use a loop?

� do you allocate matrices?

� what does, in your view, have the dominant impact on computation time?

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #425.10.2015 12:00

53

Exercise #7

� the script can be further speeded-up
� functionprimes is costly and can be run just once:

� would you be able to speed-up the script even more?

Thank you !

ver. 4.2 (25/10/2015)

Miloslav Čapek, Pavel Valtr
miloslav.capek@fel.cvut.cz

Pavel.Valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced,
stored or transmitted only with the prior permission of the authors.

Document created as part of A0B17MTB course.

