
A0B17MTB – Matlab

Part #5

Miloslav Čapek
miloslav.capek@fel.cvut.cz

Viktor Adler, Pavel Valtr, Filip Kozák

Department of Electromagnetic Field

B2-634, Prague

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

2

Learning how to …

Program branching

Loops

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

3

Program branching – loops

 repeating certain operation multiple-times, one of the basic

programming techniques

 There are 2 types of cycles in Matlab:

 for – the most used one, number of repetitions is known in advance

 while – condition is known ensuring cycle (dis)continuation as long as it

remains true

 essential programing principles to be observed:

 memory allocation (matrix-related) of sufficient size /see later.../

 cycles should be properly terminated /see later.../

 to ensure terminating condition with while cycle /see later.../

 frequently is possible to modify the array (1D → 2D, 2D → 3D using
function repmat and carry out a matrix-wise operation, under certain

conditions the vectorized code is faster and more understandable,

possibility of utilization of GPU)

 we always ask the question: is a cycle really necessary?

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

4

for loop

 for loop is applied to known number of repetitions of a group of

commands

 expression is a vector / matrix; columns of this vector / matrix are

successively assigned to n / m

 frequently, expression is generated using linspace or using

„:“, with the help of length, size, numel, etc.

 instead of m it is possible to use more relevant names like mPoints,

mRows, mSymbols, …

 for clarity, it is suitable to use e.g. mXX for rows and nXX for columns

Program flow

for m = expression

commands

end

for m = magic(4)

m

end

for n = 1:4

n

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% script calculates factorial of N

clear;

...

...

...

...

...

...

 create a script to calculate factorial N!

 use a cycle, verify your result using Matlab factorial function

 can you come up with other solutions? (e.g. using vectorising…)

 compare all possibilities for decimal input N as well

19.3.2018 14:33

5

Loops #1
Program flow

400 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

6

Memory allocation

 allocation can prevent perpetual increase of the size of a variable

 Code Analyser (M-Lint) will notify you about the possibility of allocation

by underlining the matrix's name

 whenever you know the size of a variable, allocate!

 sometimes, it pays off to allocate even when the final size is not known - then

the worst-case scenario size of a matrix is allocated and then the size of the

matrix is reduced

 allocate the variables of the largest size first, then the smaller ones

 example:

 try…

Program flow

%% WITHOUT allocation

tic;

for m = 1:1e7

A(m) = m + m;

end

toc;

% computed in 0.45s

%% WITH allocation

tic;

A = nan(1,1e7);

for m = 1:1e7

A(m) = m + m;

end

toc;

% computed in 0.06s

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

7

while loop

 keeps on executing commands contained in the body of the cycle
(commands) depending on a logical condition

 keeps on executing commands as long as all elements of the expression
(condition can be a multidimensional matrix) are non-zero

 the condition is converted to a relational expression, i.e. till all elements are true

 logical and relational operators are often used for condition testing

 if condition is not a scalar, it can be reduced using functions any or all

Program flow

while condition

commands

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

8

Typical application of loops
Program flow

%% script generates N experiments with M throws with a coin

clear;

mThrows = 1e3;

nTimes = 1e2;

results = nan(mThrows, nTimes);

for iTime = 1:nTimes % however, can be even further vectorized!

results(:, iTime) = round(rand(mThrows, 1)); % vectorized

end

%% script finds out the number of lines in a file

clear;

fileName = 'sin.m';

fid = fopen(fileName, 'r');

count = 0;

while ~feof(fid)

line = fgetl(fid);

count = count + 1;

end

disp(['lines: ' num2str(count)])

fclose(fid);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% script calculates sum from 1 by 1 to 100

clear;

...

...

...

...

...

...

...

...

 calculate the sum of integers from 1 to 100 using while cycle

 apply any approach to solve the task, but use while cycle

 are you able to come up with another solution (using a Matlab function
and without cycle)?

19.3.2018 14:33

9

Loops #2
Program flow

360 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

10

while cycle – infinite loop

 pay attention to conditions in while cycle that are always fulfilled

danger of infinite loop

 mostly, not always however(!!) it is a semantic error

 trivial, but good example of a code…

… that „never“ ends (shortcut to terminate: CTRL+C)

Program flow

while 1 == 1

disp('ok');

end

while true

disp('ok');

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

11

Interchange of an index an complex unit

 be careful not to confuse complex unit (i, j) for cycle index

 try to avoid using i and j as an index

 overloading can occur (applies generally, e.g. >> sum = 2 overloads the

sum function)

 find out the difference in the following pieces of code:

 all the commands, in principle, can be written as one line

 usually less understandable, not even suitable from the point of view of

the speed of the code

Program flow

A = 0;

for i = 1:10

A = A + 1i;

end

A = 0;

for i = 1:10

A = A + i;

end

A = 0;

for i = 1:10

A = A + j;

end

A = 0; for i = 1:10, A = A + 1i; end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

12

Nested loops, loop combining

 quite frequently there is a need for nested loops

 consider vectorising instead

 consider loop type

 loop nesting usually rapidly increases computational demands

Program flow

%% script generates N experiments with M throws with a coin

clear;

mThrows = 1e3;

nTimes = 1e2;

results = nan(mThrows, nTimes);

for iThrow = 1:mThrows

for iExperiment = 1:nTimes % not vectorized (30 times slower!!)

results(iThrow, iExperiment) = round(rand(1));

end

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% script fills a matrix

close all; clear;

...

...

...

...

...

...

...

...

...

 fill in the matrix using loops

 consider , allocate matrix first

 create a new script

 to plot the matrix A use for instance the function pcolor(A)

19.3.2018 14:33

13

Loops #3
Program flow

600 s ↑

 ,
4 2

mn m
m n

n
 A

 1, ,100 , 1, , 20m n

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

14

Loops #4
Program flow

600 s ↑

 in the previous task the loops can be avoided entirely by using vectorising

 it is possible to use meshgrid function to prepare the matrices needed

 it is possible to use vectors with compatible sizes

%% script fills a matrix

close all; clear;

M = 100;

N = 20;

[NV, MV] = meshgrid(1:N, 1:M);

A = (MV.*NV)/4 + MV./(2*NV);

pcolor(A);

close all; clear;

M = 100;

N = 20;

m = (1:M).';

n = 1:N;

A = (m.*n)/4 + m./(2*n);

pcolor(A);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

for visualization inside the loop use following piece of code:

% ... your code

figure(1);

plot(x, real(I));

axis([x(1) x(end) -1 1]);

pause(0.1);

% ... your code

19.3.2018 14:33

15

Loops #5

 visualize current distribution of a dipole antenna described as

 in the interval choose N = 101

Program flow

600 s ↑

 0

0 0 0

j
I , I e , I cos , 2

t
x t x x x

 0,4 , ,
2 2

t x

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

16

Loops #6

 try to write moving average code applied to following function

where r(x) is represented by function of uniform distribution (rand())

 use following parameters

 and then plot:

 try to make the code more efficient

Program flow

600 s ↑

 2f sin cos 0.1 ,x x x r x

clear; clc;

signalSize = 1e3;

x = linspace(0, 4*pi, signalSize);

f = sin(x).^2.*cos(x) + 0.1*rand(1, signalSize);

windowSize = 50;

% your code ...

plot(x, f, x, my_averaged);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

17

Loops #7

 for comparison it is possible to use Matlab built-in function filter

 check how the result is influenced by parameter windowSize

Program flow

600 s ↑

F = ones(1, windowSize)/windowSize;

filtered_f = filter(F, 1, f);

hold on;

plot(x(1:15:end), filtered_f(1:15:end), 'xg');

windowSize = 150;windowSize = 15;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

18

break, continue

 function break enables to terminate execution of the loop

 function continue passes control to next iteration of the loop

Program flow

% another code ...

for k = 1:length(A)

if A(k) > threshold

break;

end

% another code ...

end

% another code ...

for k = 1:length(A)

if A(k) > threshold

continue;

end

% another code ...

end

if (true)

if (true)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #53/19/2018 2:33 PM

19

Loops vs. vectorizing #1

 since Matlab 6.5 there are two powerful hidden tools available

 Just-In-Time accelerator (JIT accelerator)

 Run-Time Type Analysis (RTTA)

 JIT enables partial compilation of code segments

 precompiled loops are even faster than vectorizing

 following rules have to be observed with respect to loops:

 scalar index to be used with for loop

 only built-in functions are called inside the body of for loop

 the loop operates with scalar values only

 RTTA assumes the same data types as during the previous course of

the code - significant speed up for standardized calculations

 when measuring speed of the code, it is necessary to carry out so called

warm-up (first run the code 2 or 3 times)

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

20

Loops vs. vectorizing #2

 the motivation for introduction of JIT was to catch up with 3.

generation languages

 when fully utilized, JIT's computation time is comparable to that of C or

Fortran

 highest efficiency (the highest speedup) in particular

 when loops operate with scalar data

 when no user-defined functions are called (i.e. only build-in functions are

called)

 when each line of the loop uses JIT

 as the result, some parts of the code don't have to be vectorized (or

should not even be!)

 the whole topic is more complex (and simplified here)

 for more details see JIT_accel_Matlab.pdf at the webpage of this

course

Program flow

https://cw.fel.cvut.cz/wiki/_media/courses/a0b17mtb/jit_accel_matlab.pdf

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

21

Loops vs. vectorizing #3

 previous statement will be verified using a

simple code - filling a band matrix

 conditions for using JIT are fulfilled …

 working with scalars only, calling built-in

functions only

 HW and Matlab ver. dependent!

 try it yourself…

Program flow

clear; clc;

N = 5e3;

mat = nan(N, N);

tic,

for n1=1:N

for n2=1:N

mat(n1, n2)=0;

end

end

for n1 = 1:N

mat(n1, n1)=1;

end

for n1 = 1:(N-1)

mat(n1, n1+1)=2;

end

for n1 = 2:N

mat(n1, n1-1)=3;

end

toc,

% computed in 0.49s

(2016b)

clear; clc;

N = 5e3;

tic,

mat = diag(ones(N, 1)) + ...

2*diag(ones(N-1, 1), 1) + ...

3*diag(ones(N-1, 1), -1);

toc,

% computed in 0.20s (2016b)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

22

Program branching

 if it is needed to branch program (execute certain part of code

depending on whether a condition is fulfilled), there are two basic

ways:

 if – elseif – else – end

 switch – case – otherwise – end

Program flow

if condition

commands

elseif condition

commands

elseif condition

commands

else

commands

end

switch variable

case value1

commands

case {value2a, value2b, ...}

commands

case ...

commands

otherwise

commands

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

23

if vs. switch
Program flow

if-elseif-else-end switch-otherwise-end

it is possible to create very complex structure
(&& / ||)

simple choice of many options

strcmp is used to compare strings of various

lengths

test strings directly

test equality / inequality test equality only

great deal of logical expressions is needed in

the case of testing many options

enables to easily test one of many options
using {}

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

24

Program branching – if / else / elseif

 the most probable option should immediately follow the if statement

 only the if part is obligatory

 the else part is carried out only in the case where other conditions

are not fulfilled

 if a M×N matrix is part of the condition, the condition is fulfilled only

in the case it is fulfilled for each element of the matrix

Program flow

c = randi(1e2)

if mod(c, 2)

disp('c is odd');

elseif c > 10

disp('even, >10');

else

disp('even, <=10');

end

• the condition may contain calling a

function etc.
• conditions if may be nested

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

% your code

...

...

...

...

...

...

...

...

19.3.2018 14:33

25

Program branching – if / else / elseif

 generate random numbers

 save the numbers in vectors Neq and Pos depending on whether

each number is negative or positive; use for cycle, if–else

statement and indexing for storing values of r

 pay attention to growth in size of vectors Pos and Neq – how to solve the

problem?

 can you come up with a more elegant solution? (for cycle is not

always necessary)

Program flow

400 s ↑
r = 2*rand(8, 1)-1;

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

26

Program branching – if / else / elseif

 write a script generating a complex number and determining to what

quadrant the complex number belongs to

Program flow

500 s ↑

{z}

{z}

0

.I.II

.III .IV

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

27

Program branching – switch / case

 does a variable correspond to one of (usually many) values?

 the commands in the part otherwise are carried out when none of

the cases above applies (compare to else in the if statement)

 suitable to evaluate conditions containing strings

 if you want to learn more details on when to use if and when to use

switch, visit pages blogs.mathworks.com

 it is appropriate to always terminate

the statement by otherwise part

Program flow

c = 0.5*randi(1e2)

switch mod(c, 2)

case 1

disp('c is odd integer');

case 0

disp('c is even integer');

otherwise

disp('c is decimal number');

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

28

Program branching – switch / case

 create a script that, given name of a country, displays its capital (limit

the number of countries to just few)

Program flow

450 s ↑

%% HINT

% select country

switch country

case thisCountry

% dispCapitalCity

case thisCountry2

% dispCapitalCity2

otherwise % unknown type

% dispUnknownCity

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% HINT:

% input variables will be here

%(including type of unknown side)

switch aaa % aaa denotes the type of unknown side

case 'leg' % calculation for the first type of side

% calculation1

case 'hyp' % calculation for the second type of side

% calculation2

otherwise % unknown type

% return empty (default) values

end

19.3.2018 14:33

29

Program branching – switch / case

 create a script that, given lengths of two sides of a right triangle,

calculates the length of the third side (Pythagorean theorem)

 two sides are known together with string marking the type of unknown
side ('leg' for leg or 'hyp' for hypotenuse)

Program flow

450 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

30

What does the script do?

 try to estimate what does the script below assign to logResult

variable depending on input variable vec (a vector)

 are you able to decide whether there is a Matlab function doing the same?

Program flow

300 s ↑

% vec is a given vector

logResult = false;

m = 1;

while (m <= length(vec)) && (logResult == false)

if vec(m) ~= 0

logResult = true;

end

m = m + 1;

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

31

What does the script do?

 try to estimate what does the script below assign to logResult

variable depending on input variable mat (a matrix)

 are you able to decide whether there is a Matlab function doing the same?

Program flow

300 s ↑

% mat is a given matrix

count = 0;

[mRows, nColumns] = size(mat);

for m = 1:mRows

for n = 1:nColumns

if mat(m,n) ~= 0

count = count + 1;

end

end

end

logResult = count == numel(mat);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

32

Example of listing more options

 switch supports options listing

 evaluation of options A1 a A2 in the same way:

Program flow

switch my_expression

case {'A1', 'A2'}

% do something

otherwise

% do something else

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

33

Inifinite loop – for cycle (a riddle)

 in the last lecture we learned how to construct the infinite loop with
the while command (>> while true, 'ok', end)

 Do you think, that the infinite loop can be constructed with the for cycle

as well?

 How?

 Are there any restrictions? How many cycles will be performed and why?

Program flow

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #53/19/2018 2:33 PM

34

Discussed functions

cell create cell array ●

factorial calculate factorial

switch-case-otherwise-end condition statement ●

for-end loop over distributed range ●

while-end repeat loop while condition is true ●

break, continue terminate loop, pass control to next iteration of loop ●

if-elseif-else-end branching statement ●

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

35

Exercise #1

 draft a script to calculate values of Fibonacci sequence up to certain
value limit

 have you come across this sequence already?

 if not, find its definition

 implementation:

 what kind of loop you use (if any)?

 what matrices / vectors do you allocate?

 plot the resulting series using

function plot(f, '-o')

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

%% fibonacci sequence

% your code

...

...

...

...

...

...

plot(f, '-o');

xlabel('Element n.')

ylabel('Fibonacci Numbers')

19.3.2018 14:33

36

Exercise #2

 rate of reproduction of rabbits:

 try to find out the relation of the series

to the value of golden ratio

 try to calculate it:

240 s ↑

>> f(end)/f(end-1)

5
1.61

1
8033

2

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #53/19/2018 2:33 PM

37

Exercise #3

 try to determine the density of prime numbers

 examine the function primes generating prime numbers

 for the orders 101 – 107 determine the primes density (i.e. the number of

primes up to 10, to 100, …, to 107)

 outline the dependence using plot

 use logarithmic scale

(function loglog)

 how does the plot change?

600 s ↑

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

38

Exercise #4

 did you use loop?

 is it advantageous (necessary) to use a loop?

 do you allocate matrices?

 what does, in your view, have the dominant impact on computation time?

%% distribution of prime-numbers (version 1)

% straightforward but quite slow solution

ord = 7;

for m = 1:ord

A(m) = 10^(m);

P = primes(A(m));

B(m) = length(P);

disp(m);

clear P;

end

loglog(A, B, 'ro-');

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

39

Exercise #5

 the script can be further speeded-up

 function primes is costly and can be run just once:

 would you be able to speed-up the script even more?

%% distribution of prime-numbers (version 2)

% improved performance (primes is called only 1x)

ord = 7;

A = 10.^(1:ord);

B = nan(1, ord);

P = primes(10^ord);

for m = 1:ord

B(m) = sum(P < 10^m); % true values are summed

disp(m);

end

loglog(A, B, 'ro-');

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

40

Exercise #6

 following expansion holds true:

 based on the expansion for x = 1 estimate value of π:

 determine the number of elements of the sum and computational time

required to achieve estimation accuracy better than 1·10-6

600 s ↑

2 1 3 5 7 9

0

arctan 1 ...
2 1 3 5 7 9

n

n

n

x x x x x
x x

n

1 1 1 1

arctan 1 1 ...
4 3 5 7 9

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

42

Exercise #7

 estimate value of π using following expansion

 determine the number of elements of the sum and computational time

required to achieve estimation accuracy better than 1·10-6

600 s ↑

 0

1 1 1 1
...

8 (4 1) 4 3 1 3 5 7 9 11n n n

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #519.3.2018 14:33

44

Exercise #8

 use following expression to approximate π :

 use following expression to implement the arctan function :

 determine the number of elements of the sum and computational time

required to achieve estimation accuracy better than 1·10-6 and

compare the solution with previous solutions

600 s ↑

1 1 1
6arctan 2arctan arctan

4 8 57 239

2 1 3 5 7 9

0

arctan 1 ...
2 1 3 5 7 9

n

n

n

x x x x x
x x

n

Thank you!

ver. 9.1 (19/03/2018)

Miloslav Čapek
miloslav.capek@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced,
stored or transmitted only with the prior permission of the authors.

Document created as part of A0B17MTB course.

