A0B17MTB - Matlab

Part #5

Miloslav Čapek

miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field B2-626, Prague

Learning how to ...

Data type cell

Program branching #2

Visualizing in Matlab #1

Debugging #1

4.4.2016 14:53

A0B17MTB: Part #5

2

Cell

- variable of type cell enables to store all types of variables (i.e. for instance variable of type cell inside another variable of type cell)
 - Examples of cell:

>> CL1 = {zeros(2), ones(3), rand(4), 'test', {NaN(1), inf(2)}}

• variable of type cell can be easily allocated:

>> CL0 = cell(1,3)

• memory requirements is a trade-off for complexity of cell type

Cell indexing #1

- there are two possible ways of cell structure indexing
 - round brackets () are used to access cells as such
 - curly brackets { } are used to access data in individual cells

• Example.:

```
>> CL = {[1 2;3 4];eye(3);'test'}
>> CL(2:3) % returns cells 2, 3 of CL
>> CL{1} % returns matrix [1 2; 3 4]
>> CL{1}(2,1) % = 3
>> CL1 = CL(1) % CL1 is still a cell!
>> M = CL1{1} % M is a matrix of numbers of type double
double
```

4.4.2016 14:53

Data types

>> celldisp(CL)

 $CL\{1\}\{1\} =$

 $CL\{1\}\{2\} =$

 $CL{2}{1} =$

1

3

 $CL{2}{2} =$

8

3

4

2

4

1

9

5 7

6

2

one

two

Cell indexing #2

- Example.:
- >> CL1 = { 'one', 'two' };
 >> CL2 = { [1, 2; 3, 4], magic(3) };
 >> CL = { CL1; CL2 };
 >> CL{2}{1}(2,1)
- functions to get oriented in a cell

celldisp 📣 Figure 1 File Edit View Insert Tools Desktop Window Help 🎦 🖆 🛃 ዿ | 🔖 | 🔍 🤍 🖤 🧐 🐙 🔏 - 🗔 | 🗖 📰 | 💷 🛄 cellplot one two

4.4.2016 14:53

A0B17MTB: Part #5

5

Typical application of cells

- in switch-case branching for enlisting more possibilities
- work with variously long strings
- GUI
- all iteration algorithms with variable size of variables
- ...

Program branching - switch / case

- does a variable correspond to one of (usually many) values?
- the commands in the part otherwise are carried out when none of the cases above applies (compare to else in the ifstatement)
- suitable to evaluate conditions containing strings
 - if you want to learn more details on when to use if and when to use switch, visit pages blogs.mathworks.com
- it is appropriate to always terminate the statement by otherwise part

```
c = randi(1e2);
switch mod(c,2)
case 1
    disp('c is odd');
case 0 & c > 10
    disp('even, >10');
otherwise
    disp('even, <=10');
end
```


Program branching - switch / case

450 s

- create a script that, given lengths of two sides of a right triangle, calculates the length of the third side (Pythagorean theorem)
 - two sides are known together with string marking the type of unknown side ('leg' for leg or 'hyp' for hypotenuse)

```
%% HINT:
% input variables will be here
%(including type of unknown side)
switch aaa % aaa denotes the type of unknown side
case yyy % calculation for the first type of side
% calculation1
case zzz % calculation for the second type of side
% calculation2
otherwise % unknown type
% return empty (default) values
end
```


What does the script do?

- try to estimate what does the script below assign to logResult variable depending on input variable vec (a vector)
 - are you able to decide whether there is a Matlab function doing the same?

- try to estimate what does the script below assign to logResult variable depending on input variable mat (a matrix)
 - are you able to decide whether there is a Matlab function doing the same?

```
% mat is a given matrix
count = 0;
[mRows, nColumns] = size(mat);
for m = 1:mRows
    for n = 1:nColumns
        if mat(m,n) ~= 0
            count = count + 1;
        end
        end
end
logResult = count == numel(mat);
```


Example of listing more options

- switch supports options listing
 - evaluation of options A1 a A2 in the same way:

```
switch my_expression
case {'A1', 'A2'}
% do something
otherwise
% do something else
end
```

Inifinite loop – for cycle (a riddle)

- in the last lecture we learned how to construct the infinite loop with the while command (>> while true, 'ok', end)
 - Do you think, that the infinite loop can be constructed with the for cycle as well?
 - How?
 - Are there any restrictions? How many cycles will be performed and why?

Introduction to visualizing

- we have already got acquainted (marginally) with some of Matlab graphs
 - plot, stem, bar, hist, surf
- in general, graphical functions in Matlab can be used as
 - <u>higher</u> level
 - access to individual functions, object properties are adjusted by input parameters of the function
 - first approx. 9-10 weeks of the semester
 - <u>lower</u> level
 - calling and working with objects directly
 - knowledge of Matlab handle graphics (OOP) is required
 - opens wide possibilities of visualization customization
- details to be found in:
 - Matlab \rightarrow Graphics \rightarrow 2-D and 3-D Plots \rightarrow Plotting Basics

Visualizing

Selected graphs #1

Visualizing

Selected graphs #2

MATLAB POLAR PLOTS

MATLAB IMAGE PLOTS

>> [X,Y] = meshgrid(-3:.125:3); >> Z = sin(X) + cos(Y); >> mesh(X,Y,Z); >> axis([-3 3 -3 3 -2 2]);

MATLAB 3-D SURFACES

4.4.2016 14:53

A0B17MTB: Part #5 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Selected functions for graph modification

Graphs can be customized in many ways, the basic ones are:

function	description	
title	title of the graph	
grid on, grid off	turns grid on / off	
xlim, ylim, zlim	set axes' range	
xlabel, ylabel,	label axes	
hold on	enables to add another graphical elements while keeping the existing ones	
legend	display legend	
subplot	open more axes in one figure	
text	adds text to graph	
gtext, ginput	insert text using mouse, add graph point using mouse	
and others		

4.4.2016 14:53

figure

- figure opens empty figure to plot graphs
 - the function returns object of class Figure

hold on

- function hold on enables to plot multiple curves in one axis, it is possible to disable this feature by typing hold off
- functions plot, plot3, stem and others enable to add optional input parameters (as strings)

Visualizing

LineSpec – customizing graph curves

- what do plot function parameters mean?
 - see >> doc LineSpec
 - the most frequently customized parameters of graph's lines
 - color (can be entered also using matrix [**R** G **B**], where **R**, **G**, **B** vary between 0 a 1)
 - marker shape (*Markers*)
 - line style
- big changes since 2014b version!

		marker			
line color		' + '	plus		
'r'	red	' o '	circle		
'g'	green	1 * 1	asterisk		
'b'	blue	1.1	dot		
' C '	cyan	'x'	x-cross		
'm'	magenta	's'	square		
'Y'	yellow	'd'	diamond		
'k'	black	1 ^ 1	triangle		
' w '	white	and others	>> doc LineSpec		

plot(x,f,	'bo-');
<pre>plot(x,f,</pre>	'g*');

```
figure('color', ...
[.5 .1 .4]);
```

line style	
" = "	solid
' '	dashed
1:1	dot
''	dash-dot
'none'	no line

A0B17MTB: Part #5
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

LineSpec – default setting in 2014b

- colors in given order are used when plotting more lines in one axis
 - this color scheme was changed in 2014b and later versions:
- it is not necessary to set color of each curve separately when using hold on
 - following default color order is used:

```
close all; clear; clc;
x = 0:0.01:pi;
figure;
hold on;
plot(x, 1*sin(x));
plot(x, 2*sin(x));
plot(x, 3*sin(x));
```

>> get(groot,	'DefaultAxesColorOrder')	
% ans =		
	0 1170	0 7/10
° 0.8500	0.3250	0.0980
8 0.9290	0.6940	0.1250
8 0.4940	0.1840	0.5560
% 0.4660	0.6740	0.1880
% 0.3010	0.7450	0.9330
% 0.6350	0.0780	0.1840

4.4.2016 14:53

A0B17MTB: Part #5 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Visualizing

Visualizing - legend, grid

plot(x, f1); hold on; plot(x, f2, 'r');

grid on; legend('f_1(x) = sin(x)+cos(x)',... 'f_2(x) = sin(x)-cos(x)',... 'Location', 'southeast');

4.4.2016 14:53

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

plot3

- the example below shows plotting a spiral and customizing plotting parameters
 - functions xlabel, ylabel and zlabel are used to label the axes
 - function title is used to display the heading
 - function legend pro characterize the curve

Visualizing

450 s

- LineSpec customizing graph curves
 - evaluate following two functions in the interval [-1,1] for 101 values:

 $f_1(x) = \sinh(x), \qquad f_2(x) = \cosh(x)$

- use the function plot to depict both f_1 and f_2 so that
 - both functions are plotted in the same axis
 - the first function is plotted in blue with □ marker as solid line
 - the other function is plotted in red with ◊ marker and dashed line
 - limit the interval of the *y*-axis to [-1.5, 1.5]
 - add a legend associated to both functions
 - label the axes (x-axis: x, y-axis: f_1, f_2)
 - apply grid to the graph

Visualizing

LineSpec – customizing graph curves

$$f_1(x) = \sinh(x), \qquad f_2(x) = \cosh(x)$$

4.4.2016 14:53

A0B17MTB: Part #5

24

Visualizing - Plot tools

- it is possible to keep on editing the graph by other means
 - save, zoom, pan, rotate, marker, legend

• open Matlab Property Editor (we discuss later)

- all these operations can be carried out using Matlab functions
 - we discuss later (e.g. rotate3d activates figure's rotation tool, view(az,el) adjusts 3D perspective of the graph for given azimuth az and elevation el)

25

Visualizing – use of NaN values

- NaN values are not depicted in graphs
 - it is quite often needed to distinguish zero values from undefinied values
 - plotting using NaN can be utilized in all functions for visualizing

A0B17MTB: Part #5

Visualizing

Exercise - sampling

300 s

• plot function
$$f(x) = x \sin\left(\frac{\pi}{2}(1+20x)\right)$$
 in the interval $\langle -1; 1 \rangle$

with step 0.2, 0.1 a 0.01

• compare the results!

A0B17MTB: Part #5

27

Exercise - rounding

Visualizing

300 s

• plot function tan(x) for
$$x \in \langle -3/2\pi; 3/2\pi \rangle$$
 with step $\pi/100$

- limit depicted values by ± 40
- values of the function with absolute value greater than $1 \cdot 10^{10}$ replace by 0
 - use logical indexing
- plot both results and compare them

A0B17MTB: Part #5

Function gtext

- function gtext enables placing text in graph
 - the placing is done by selecting a location with the mouse

Visualizing

Function ginput

- function ginput enables selecting points in graph using the mouse
 - we either insert requested number of points (P = ginput(x)) or terminate by pressing Enter

Debugging #1

- $bug \Rightarrow debugging$
- we distinguish:
 - semantic errors ("logical" or "algorithmic" errors)
 - usually difficult to identify
 - syntax errors ("grammatical" errors)
 - pay attention to the contents of error messages it makes error elimination easier
 - unexpected events (see later)
 - e.g. problem with writing to open file, not enough space on disk etc.
 - rounding errors (everything is calculated as it should but the result is wrong anyway)
 - it is necessary to analyze the algorithm in advance, to determine the dynamics of calculation etc.
- software debugging and testing is an integral part of software development
 - later we will discuss the possibilities of code acceleration using Matlab profile

Debugging #2

- we first focus on semantic and syntax errors in scripts
 - we always test the program using test-case where the result is known
- possible techniques:
 - using functions who, whos, keyboard, disp
 - using debugging tools in Matlab Editor (illustration)

MATLAB Functions

dbclear	Clear breakpoints
dbcont	Resume execution
dbdown	Reverse workspace shift performed by dbup, while in debug mode
dbquit	Quit debug mode
dbstack	Function call stack
dbstatus	List all breakpoints
dbstep	Execute one or more lines from current breakpoint
dbstop	Set breakpoints for debugging
dbtype	List text file with line numbers
dbup	Shift current workspace to workspace of caller, while in debug mode
checkcode	Check MATLAB code files for possible problems
keyboard	Input from keyboard
mlintrpt	Run checkcode for file or folder, reporting results in browser

 using Matlab built-in debugging functions

A0B17MTB: Part #5 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

250 s

Debugging

for the following piece of code:

- use Matlab Editor to:
 - set *Breakpoint* (click on dash next to line number)
 - run the script (F5)
 - check the status of variables (keyboard mode or hover over variable's name with the mouse in Editor)
 - keep on tracing the script
 - what is the difference between *Continue* a *Step* (F10)?

iCol = 1:N mat(iRow,iCol) = 1;

A0B17MTB: Part #5 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Advanced debugging

- Conditional Breakpoints
 - serve to suspend the execution of code when a condition is fulfilled
 - sometimes, the set up of the correct condition is not an easy task...
 - easier to find errors in loops
 - code execution can be suspended in a particular loop
 - the condition may be arbitrary evaluable logical expression

```
% code with an error
clear; clc;
N = 100;
mat = magic(2*N);
selection = zeros(N, N);
for iRow = 1:N+2
    selection(iRow, :) = ...
    mat(iRow, iRow:N+iRow-1);
end
```


A0B17MTB: Part #5

Selected hints for code readability #1

```
for iRow = 1:N
    mat(iRow,:) = 1;
end % end of ...
```

- use indention of loop's body, indention of code inside conditions (TAB)
 - size of indention can be adjusted in Preferences (usually 3 or 4 spaces)
- use "positive" conditions
 - i.e. use isBigger or isSmaller, not isNotBigger (can be confusing)
- complex expressions with logical and relational operators should be evaluated separately → higher readability of code
 - compare:

4.4.2016 14:53

Selected hints for code readability #2

- code can be separated with a line to improve clarity
- use two lines for separation of blocks of code
 - alternatively use cells or commented lines %-----, etc.
- consider the use of spaces to separate operators (= & |)
 - to improve code readability:

(val>lowLim) & (val<upLim) & ~ismember(val,valArray)</pre>

vs.

(val > lowLim) & (val < upLim) & ~ismember(val, valArray)</pre>

• in the case of nesting use comments placed after end

switch-case-otherwise-end	condition statement	•
figure, hold	open new figure, enable multiple curves in one axis	•
title, xlim,, xlabel,	heading, axes limits, axes labels	•
legend, grid	legend, grid	•
gtext, ginput	interactive text insertion, interactive input from mouse or cursor	•

- create a script to simulate L roll of the dice
 - what probability distribution do you expect?
 - use histogram to plot the result
 - consider various number of tosses L (from tens to millions)

600 s

_ D ×

A0B17MTB: Part #5 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

- create a script to simulate N series of trials, where in each series a coin is tossed M times (the result is either head or tail)
 - generate a matrix of tosses (of size M×N)
 - calculate how many times head was tossed in each of the series (a number between 0 and M)
 - calculate how many times more (or less) the head was tossed than the expected average (given by uniform probability distribution)
 - what probability distribution do you expect?
 - plot resulting deviations of number of heads
 - use function histogram()

• mean and standard deviation :

$$N = 1 \cdot 10^{4} :$$

$$\mu = \frac{1}{N} \sum_{i} x_{i} \approx 0 \qquad \sigma = \sqrt{\frac{\sum_{i} (\mu - x_{i})^{2}}{N}} = 15.7742$$

4.4.2016 14:53

A0B17MTB: Part #5

40

• to test whether we get similar distribution for directly generated data:

coin toss:

directly generated data:

4.4.2016 14:53

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

- use function histfit (Statistics Toolbox) to plot probability density function related to a histogram
 - set the parameter nbins accordingly to properly display histogram of discrete random variable

• use Distribution Fitting Tool (dfittool) to approximate probability distributions of random trials

承 Distribution Fitting Tool	🥠 Edit Fit		_ 🗆 🗙
File View Tools Window Help	Fit name:	fit 1	
🎍 🔍 🔍 🕐 🔚 🎟 🖪	Data:	data data	-
Display type: Density (PDF) 🔽 Distribution: Normal	Distribution:	Normal	-
Data New Fit Manage Fits Evaluate Exclude	Exclusion rule:	(none)	-
0.025	-Normal Distribution para mu (location) sigma (scale)	meters:	
0.02	Results:		Apply
	Distributi Log likeli Domain: Mean:	ion: Normal ihood: -41792.7 -Inf < y < Inf -0.0689	
0.01 - 0.005 -	Variance: Parameter mu sigma Estimated mu mu 0	249.827 Estimate Std. Err. -0.0669 0.158059 15.8059 0.111773 covariance of parameter estim sigma 0.0249827 3.64678e-18	nates:
-60 -40 -20 0 20 40 60 Data	sigma 3.6	54678e-18 0.0124932 space Manage Fits Close	Help

4.4.2016 14:53

A0B17MTB: Part #5

600 s

- use Monte Carlo method to estimate the value of π
 - Monte Carlo is a stochastic method using pseudorandom numbers
- The procedure is as follows:

(1) generate points (uniformly distributed) in a given rectangle(2) compare how many points there are in the whole rectangle and how many there are inside the circle

$$\frac{S_{o}}{S_{\Box}} = \frac{\pi r^{2}}{(2r)^{2}} = \frac{\pi}{4} \approx \frac{\text{hits}}{\text{shots}}$$

- write the script in the way that the number of points can vary
 - notice the influence of the number of points on accuracy of the solution

44

Exercise #7- solution

• resulting code (circle radius r = 1):

4.4.2016 14:53

45

A0B17MTB: Part #5

• approximation of Ludolph's number - visualization:

• visualization of the task:

A0B17MTB: Part #5
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

4.4.2016 14:53

47

• following expansion holds true:

$$\arctan\left(x\right) = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{\left(x\right)^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$$

• based on the expansion for x = 1 estimate value of π :

$$\arctan(1) = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

• determine the number of elements of the sum and computational time required to achieve estimation accuracy better than $1 \cdot 10^{-6}$

600 s

• estimate value of π using following expansion

$$\frac{\pi}{8} = \sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)} = \frac{1}{1\cdot 3} + \frac{1}{5\cdot 7} + \frac{1}{9\cdot 11} + \dots$$

• determine the number of elements of the sum and computational time required to achieve estimation accuracy better than $1 \cdot 10^{-6}$

600 s

• use following expression to approximate π :

$$\frac{\pi}{4} = 6 \arctan\left(\frac{1}{8}\right) + 2 \arctan\left(\frac{1}{57}\right) + \arctan\left(\frac{1}{239}\right)$$

• use following expression to implement the arctan function :

$$\arctan\left(x\right) = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{\left(x\right)^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$$

 determine the number of elements of the sum and computational time required to achieve estimation accuracy better than 1·10⁻⁶ and compare the solution with previous solutions

600 s

• Fourier series approximation of a periodic rectangular signal with zero direct component, amplitude A and period T is

$$s(t) = \frac{4A}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin\left(\frac{2\pi t \left(2k+1\right)}{T}\right)$$

• plot resulting signal s(t) approximated by one to ten harmonic components in the interval $t \in \langle -1.1; 1.1 \rangle$ s; use A=1 V a T=1 s

600 s

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #5

4.4.2016 14:53

Thank you!

ver. 5.2 (04/04/2016) Miloslav Čapek, Miloslav Čapek miloslav.capek@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors. Document created as part of A0B17MTB course.