Markov Decision Processes and

Exact Solution Methods:

Value Iteration
Policy Iteration
Linear Programming

Pieter Abbeel
UC Berkeley EECS

Markov Decision Process

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process (S, A, T, R, H)

Given

- S: set of states
- A: set of actions
- T: $S \times A \times S \times \{0,1,...,H\} \rightarrow [0,1], T_t(s,a,s') = P(S_{t+1} = s' | S_t = s, a_t = a)$
- R: $S \times A \times S \times \{0, 1, ..., H\} \rightarrow \Re$ $R_t(s,a,s') = \text{reward for } (S_{t+1} = s', S_t = s, a_t = a)$
- H: horizon over which the agent will act

Goal:

• Find $\pi: S \times \{0, 1, ..., H\} \rightarrow A$ that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg \max_{\pi} E[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi]$$

Examples

MDP (S, A, T, R, H),

goal: $max_{\pi} E[\sum_{t=0}^{n} R(S_t, A_t, S_{t+1}) | \pi]$

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end

Solving MDPs

- In an MDP, we want an optimal policy π^* : $S \times 0:H \rightarrow A$
 - A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards
- Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal

Outline

Optimal Control

```
= given an MDP (S, A, T, R, \gamma, H) find the optimal policy \pi^*
```

- Exact Methods:
 - Value Iteration
 - Policy Iteration
 - Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!

Value Iteration

- Algorithm:
 - Start with $V_0^*(s) = 0$ for all s.
 - For i=1, ..., HGiven V_i^* , calculate for all states $s \in S$:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$

- This is called a value update or Bellman update/back-up
- $V_i^*(s)$ = the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i steps

Exercise 1: Effect of discount, noise

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1)
$$\gamma$$
 = 0.1, noise = 0.5

(2)
$$\gamma$$
 = 0.99, noise = 0

(3)
$$\gamma$$
 = 0.99, noise = 0.5

(4)
$$\gamma = 0.1$$
, noise = 0

0.00>	0.00 >	0.01	0.01 >	0.10
0.00		0.10	0.10 >	1.00
0.00		1.00		10.00
0.00 >	0.01 >	0.10	0.10 >	1.00
-10.00	10.00	-10.00	-10.00	10.00

(a) Prefer close exit (+1), risking the cliff (-10) --- γ = 0.1, noise = 0

0.00 >	0.00 >	0.00	0.00	0.03
0.00		0.05	0.03 >	0.51
0.00		1.00		10.00
•	^	^	•	A
0.00	0.00	0.05	0.01	0.51
10.00	10.00	10.00	10.00	10.00

(b) Prefer close exit (+1), avoiding the cliff (-10) -- γ = 0.1, noise = 0.5

9.41 →	9.51 >	9.61	9.70 →	9.80
9.32		9.70 →	9.80 >	9.90
9.41		1.00		10.00
9.51 >	9.61 >	9.70 >	9.80)	9.90
10.00	10.00	-10.00	-10.00	10.00

(c) Prefer distant exit (+1), risking the cliff (-10) -- γ = 0.99, noise = 0

8.67 >	8.93 →	9.11 >	9.30 >	9.42
8.49		9.09	9.42 >	9.68 •
8.33		1.00		10.00
•	^	•	^	^
7.13	5.04	3.15	5.68	8.45
10.00	10.00	-10.00	-10.00	10.00

(d) Prefer distant exit (+1), avoid the cliff (-10) -- γ = 0.99, noise = 0.5

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the optimal value function V* for the discounted infinite horizon problem, which satisfies the Bellman equations $\forall S \in S: \quad V^*(s) = \max_{A} \sum_{s'} T(s,a,s') \, \left[R(s,a,s') + \gamma \, V^*(s') \right]$

$$\forall S \in S: \quad V^*(s) = \max_{A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration till convergence.
 - This produces V*, which in turn tells us how to act, namely following:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)

Convergence and Contractions

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U_{i+1} - V_{i+1}|| \le \gamma ||U_i - V_i||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:

$$||V_{i+1} - V_i|| < \epsilon$$
, $\Rightarrow ||V_{i+1} - V^*|| < 2\epsilon\gamma/(1-\gamma)$

 I.e. once the change in our approximation is small, it must also be close to correct

Outline

Optimal Control

= given an MDP (S, A, T, R, γ , H) find the optimal policy π^*

Exact Methods:

- Policy Iteration
- Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!

Policy Evaluation

Recall value iteration iterates:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

Policy evaluation:

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

At convergence:

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Exercise 2

Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct value iteration update to perform policy evaluation for this stochastic policy?

1.
$$V_{i+1}^{\mu}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{i}^{\mu}(s'))$$

2.
$$V_{i+1}^{\mu}(s) \leftarrow \sum_{s'} \sum_{a} \mu(a|s) T(s, a, s') (R(s, a, s') + \gamma V_i^{\mu}(s'))$$

3.
$$V_{i+1}^{\mu}(s) \leftarrow \sum_{a} \mu(a|s) \max_{s'} T(s, a, s') (R(s, a, s') + \gamma V_i^{\mu}(s'))$$

Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using onestep look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Evaluation Revisited

Idea 1: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Idea 2: it's just a linear system, solve with Matlab (or whatever),

variables: $V^{\pi}(s)$, constants: T, R

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Iteration Guarantees

Policy Iteration iterates over:

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy and its value function are the optimal policy and the optimal value function!

Proof sketch:

- (1) Guarantee to converge: In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., (number actions)^(number states), we must be done and hence have converged.
- (2) Optimal at convergence: by definition of convergence, at convergence $\pi_{k+1}(s) = \pi_k(s)$ for all states s. This means $\forall s \ V^{\pi_k}(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \ V_i^{\pi_k}(s') \right]$ Hence V^{π_k} satisfies the Bellman equation, which means V^{π_k} is equal to the optimal value function V^* .

Outline

Optimal Control

= given an MDP (S, A, T, R, γ , H) find the optimal policy π^*

Exact Methods:

Linear Programming

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!

Infinite Horizon Linear Program

Recall, at value iteration convergence we have

$$\forall s \in S : V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

LP formulation to find V*:

$$\begin{aligned} & \min_{V} & \sum_{s} \mu_{0}(s) V(s) \\ & \text{s.t.} & \forall s \in S, \forall a \in A : \\ & V(s) \geq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \, V^{*}(s') \right] \end{aligned}$$

 μ_0 is a probability distribution over S, with $\mu_0(s) > 0$ for all $s \in S$.

Theorem. V^* is the solution to the above LP.

Theorem Proof

Let F be the Bellman operator, i.e., $V_{i+1}^* = F(V_i)$. Then the LP can be written as:

$$\min_{V} \quad \mu_0^{\top} V$$

s.t. $V \ge F(V)$

Property: Monotonicity. If $U \ge V$ then $F(U) \ge F(V)$.

Hence, if $V \geq F(V)$ then $F(V) \geq F(F(V))$, and by repeated application, $V \geq F(V) \geq F^2 V \geq F^3 V \geq \ldots \geq F^{\infty} V = V^*$.

Any feasible solution to the LP must satisfy $V \ge F(V)$, and hence must satisfy $V \ge V^*$. Hence, assuming all entries in μ_0 are positive, V^* is the optimal solution to the LP.

Dual Linear Program

$$\max_{\lambda} \sum_{s \in S} \sum_{a \in A} \sum_{s' \in S} \lambda(s, a) T(s, a, s') R(s, a, s')$$
s.t.
$$\forall s' \in S : \sum_{a' \in A} \lambda(s', a') = \mu_0(s) + \gamma \sum_{s \in S} \sum_{a \in A} \lambda(s, a) T(s, a, s')$$

- Interpretation:
 - $\lambda(s,a) = \sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a)$
 - **E**quation 2: ensures λ has the above meaning
 - Equation I: maximize expected discounted sum of rewards
- Optimal policy: $\pi^*(s) = \arg \max_a \lambda(s, a)$

Outline

Optimal Control

= given an MDP (S, A, T, R, γ , H) find the optimal policy π^*

Exact Methods:

For now: discrete state-action spaces as they are simpler to get the main concepts across. Will consider continuous spaces later!

Today and forthcoming lectures

- Optimal control: provides general computational approach to tackle control problems.
 - Dynamic programming / Value iteration
 - ✓ Exact methods on discrete state spaces (DONE!)
 - Discretization of continuous state spaces
 - Function approximation
 - Linear systems
 - LQR
 - Extensions to nonlinear settings:
 - Local linearization
 - Differential dynamic programming
 - Optimal Control through Nonlinear Optimization
 - Open-loop
 - Model Predictive Control
 - Examples:

