
Markov Decision Processes
and

Exact Solution Methods:
Value Iteration
Policy Iteration

Linear Programming

Pieter Abbeel
UC Berkeley EECS

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAA

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process

Assumption: agent gets to observe the state

Markov Decision Process (S, A, T, R, H)

Given

n  S: set of states

n  A: set of actions

n  T: S x A x S x {0,1,…,H} à [0,1], Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a)

n  R: S x A x S x {0, 1, …, H} à < Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a)

n  H: horizon over which the agent will act

Goal:

n  Find ¼ : S x {0, 1, …, H} à A that maximizes expected sum of rewards, i.e.,

MDP (S, A, T, R, H), goal:

q  Cleaning robot

q  Walking robot

q  Pole balancing

q  Games: tetris, backgammon

q  Server management

q  Shortest path problems

q  Model for animals, people

Examples

Canonical Example: Grid World

§  The agent lives in a grid
§  Walls block the agent’s path
§  The agent’s actions do not

always go as planned:
§  80% of the time, the action North

takes the agent North
(if there is no wall there)

§  10% of the time, North takes the
agent West; 10% East

§  If there is a wall in the direction
the agent would have been taken,
the agent stays put

§  Big rewards come at the end

Solving MDPs

n  In an MDP, we want an optimal policy π*: S x 0:H → A
n  A policy π gives an action for each state for each time

n  An optimal policy maximizes expected sum of rewards

n  Contrast: In deterministic, want an optimal plan, or sequence of actions,
from start to a goal

t=0

t=1
t=2

t=3
t=4

t=5=H

n  Optimal Control

=

given an MDP (S, A, T, R, °, H)

find the optimal policy ¼*

n  Exact Methods:

n  Value Iteration

n  Policy Iteration

n  Linear Programming

For now: discrete state-action spaces as they are simpler to get the main
concepts across. Will consider continuous spaces later!

Outline

Value Iteration
n  Algorithm:

n  Start with for all s.

n  For i=1, … , H
 Given Vi*, calculate for all states s 2 S:

n  This is called a value update or Bellman update/back-up

n  = the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, ° =0.9, two terminal states with R = +1 and -1

(a) Prefer the close exit (+1), risking the cliff (-10)

(b) Prefer the close exit (+1), but avoiding the cliff (-10)

(c) Prefer the distant exit (+10), risking the cliff (-10)

(d) Prefer the distant exit (+10), avoiding the cliff (-10)

Exercise 1: Effect of discount, noise

(1) ° = 0.1, noise = 0.5

(2) ° = 0.99, noise = 0

(3) ° = 0.99, noise = 0.5

(4) ° = 0.1, noise = 0

(a) Prefer close exit (+1), risking the cliff (-10) --- ° = 0.1, noise = 0

Exercise 1 Solution

(b) Prefer close exit (+1), avoiding the cliff (-10) -- ° = 0.1, noise = 0.5

Exercise 1 Solution

(c) Prefer distant exit (+1), risking the cliff (-10) -- ° = 0.99, noise = 0

Exercise 1 Solution

(d) Prefer distant exit (+1), avoid the cliff (-10) -- ° = 0.99, noise = 0.5

Exercise 1 Solution

§  Now we know how to act for infinite horizon with discounted rewards!
§  Run value iteration till convergence.
§  This produces V*, which in turn tells us how to act, namely following:

§  Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

25

Convergence and Contractions
n  Define the max-norm:

n  Theorem: For any two approximations U and V

n  I.e. any distinct approximations must get closer to each other,
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal
solution

n  Theorem:

n  I.e. once the change in our approximation is small, it must also
be close to correct

26

n  Optimal Control

=

given an MDP (S, A, T, R, °, H)

find the optimal policy ¼*

n  Exact Methods:

n  Value Iteration

n  Policy Iteration

n  Linear Programming

For now: discrete state-action spaces as they are simpler to get the main
concepts across. Will consider continuous spaces later!

Outline

Policy Evaluation
n  Recall value iteration iterates:

n  Policy evaluation:

n  At convergence:

Exercise 2

Policy Iteration
n  Alternative approach:

n  Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

n  Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

n  Repeat steps until policy converges

n  This is policy iteration
n  It’s still optimal!

n  Can converge faster under some conditions

Policy Evaluation Revisited

n  Idea 1: modify Bellman updates

n  Idea 2: it’s just a linear system, solve with
Matlab (or whatever),
variables: V¼(s),
constants: T, R

Proof sketch:
(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be

encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)(number states), we must be done and hence have converged.

(2) Optimal at convergence: by definition of convergence, at convergence ¼k+1(s) = ¼k(s) for all states s.
This means

 Hence satisfies the Bellman equation, which means is equal to the optimal value function V*.

Policy Iteration Guarantees

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

34

Policy Iteration iterates over:

n  Optimal Control

=

given an MDP (S, A, T, R, °, H)

find the optimal policy ¼*

n  Exact Methods:

n  Value Iteration

n  Policy Iteration

n  Linear Programming

For now: discrete state-action spaces as they are simpler to get the main
concepts across. Will consider continuous spaces later!

Outline

n  Recall, at value iteration convergence we have

n  LP formulation to find V*:

µ0 is a probability distribution over S, with µ0(s)> 0 for all s 2 S.

Infinite Horizon Linear Program

Theorem. V* is the solution to the above LP.

Theorem Proof

n  Interpretation:

n 

n  Equation 2: ensures ¸ has the above meaning

n  Equation 1: maximize expected discounted sum of rewards

n  Optimal policy:

Dual Linear Program

n  Optimal Control

=

given an MDP (S, A, T, R, °, H)

find the optimal policy ¼*

n  Exact Methods:

n  Value Iteration

n  Policy Iteration

n  Linear Programming

For now: discrete state-action spaces as they are simpler to get the main
concepts across. Will consider continuous spaces later!

Outline

n  Optimal control: provides general computational approach to tackle control
problems.

n  Dynamic programming / Value iteration
n  Exact methods on discrete state spaces (DONE!)
n  Discretization of continuous state spaces
n  Function approximation
n  Linear systems
n  LQR
n  Extensions to nonlinear settings:

n  Local linearization
n  Differential dynamic programming

n  Optimal Control through Nonlinear Optimization
n  Open-loop
n  Model Predictive Control

n  Examples:

Today and forthcoming lectures

