$\overline{\text{GVG'2017-Test-}\alpha\text{-EN}}$

Jméno:

Body:

1. Complete vectors \vec{b}_2 and \vec{b}_3 to form a basis in \mathbb{R}^3 : $\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $\vec{b}_2 = \begin{bmatrix} . \\ . \\ . \end{bmatrix}$ $\vec{b}_3 = \begin{bmatrix} . \\ . \\ . \end{bmatrix}$

2. Use LD, resp. LI, to mark linearly dependent, resp. linearly independent, sets of vectors in ()

$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\2 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \right\}$$

3. Write the coordinates of vector \vec{x} in ordered basis $\beta = (\vec{b}_1, \vec{b}_2)$:

4. Vector \vec{x} has coordinates (1, -1) in ordered basis \vec{b}_1 , \vec{b}_2 . What are its coordinates in basis $\vec{b}_1' = 2 \vec{b}_1$, $\vec{b}_2' = \vec{b}_1 - \vec{b}_2$?

5. The following figure shows two coordinate systems (O, β) and (O', β') , with bases $\beta = (\vec{b}_1, \vec{b}_2)$ and $\beta' = (\vec{b}_1', \vec{b}_2')$

(a) Write down coordinates of vectors of basis β in basis β' .

(b) Write down coordinates of vectors of basis β' in basis β .

(c) Write down the general formula for transforming coordinates of \vec{x}_{β} representing a general point X in (O, β) into coordinates of $\vec{x}'_{\beta'}$ representing X in (O', β') and fill in the concrete numerical values for the situation in the figure.

6. Write down the basis of the one-dimensional subspace of \mathbb{R}^3 , which results as the intersetion of two two-dimensional subspaces of \mathbb{R}^3 , which are determined by their bases

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

7. Change one element of the following matrix so it becomes a rank one matrix.

$$\begin{bmatrix}
0 & 1 & 0 \\
1 & 2 & 0 \\
2 & 4 & 0
\end{bmatrix}$$

8. Find all solutions to the systems

$$\begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

9. Find the eigenvalues and eigenvectors of matrix

$$\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

10. How many roots including multiples does the equation $x^6 + x^4 - x^2 - 1 = 0$ have in complex space? Find as many of its roots as possible.