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Talk overview

 Arrangements of lines
– Incremental construction
– Topological plane sweep

 Duality – next lesson
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Arrangements

 The next most important structure in CG after 
CH, VD, and DT

 Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

 We concentrate on arrangement of lines in plane
 Typical application:  problems of point sets in dual 

plane (collinear points, point on circles, …)
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Line arrangement

 A finite set L of lines subdivides the plane into a 
cell complex, called arrangement A(L)

 In plane, arrangement defines a planar graph
– Vertices – intersections of (2 or more) lines 
– Edges – intersection free segments (or rays or lines)
– Faces – convex regions containing no line 

(possibly unbounded)

[Mount] (4 / 55)



 Simple arrangement assumption
= no three lines intersect in a single point

– Can be solved by careful implementation or symbolic 
perturbation

Line arrangement
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Line arrangement

 Formal problem: graph must have bounded edges
– Topological fix: add vertex in infinity
– Geometrical fix: BBOX, often enough as abstract 

with corners ∞, ∞ , ∞,∞

[Mount]
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Combinatorial complexity of line arrangement

 O(n2) 
 Given n lines in general position, max numbers are

– Vertices                     - each line intersect n – 1 others

– Edges    n2 - n–1 intersections create n edges
on each of n lines

– Faces 
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Construction of line arrangement

(0.  Plane sweep method)
– O(n2 log n) time and O(n) storage

plus O(n2) storage for the arrangement
(log n - heap & BVS access, n2 vertices, edges, faces)  

A.  Incremental method 
– O(n2) time and O(n2) storage 
– Optimal method

B.  Topological plane sweep
– O(n2) time and O(n) storage only
– Does not store the result arrangement
– Useful for applications that may throw out the 

arrangement after processing
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A. Incremental construction of arrangement

 O(n2) time, O(n2) space
~size of arrangement => it is an optimal algorithm 

 Not randomized – depends on n only, not on order
 Add line li one by one (i = 1 .. n)

– Find the leftmost intersection with BBOX    
among 2(i-1)+4 edges on the BBOX …O(i) 

– Trace the line through the arrangement A(Li-1) and split 
the intersected faces …O(i) – why? See later

– Update the subdivision (cell split) …O(1)

 Altogether O(ni) = O(n2)
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Input:
Output:

A. Incremental construction of arrangement
Arrangement( L )

Set of lines L in general position (no 3 intersect in 1 common point)
Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L) )

1. Compute the BBOX B(L) containing all the vertices of A(L)          …O(n2)
2. Construct DCEL for the subdivision induced by BBOX B(L) …O(1)
3. for i = 1 to n do      // insert line li
4. find edge e, where line li intersects the BBOX of 2(i-1)+4 edges …O(i)
5. f = bounded face incident to the edge e
6. while f is in B(L)   (bounded face f  = f is in the BBOX) … O(???)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) …O(1)

See later



Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line li intersects current edge e
 When intersection found, jump to the face on the 

other side of this edge e

[Berg]

n=8 lines, 7 faces in the zone, 22 edges tested of max 48
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Tracing the line through the arrangement

 Number of traversed edges determines the 
insertion complexity

 Naïve estimation would be O(i2) traversed edges
(i faces,  i lines per face, i2 edges)

 According to the Zone theorem, it is O(i) edges 
only!

Zone theorem
=  given an arrangement A(L) of n lines in the plane 

and given any line l in the plane, the total number 
of edges in all the cells of the zone ZA(L)  is at 
most 6n. For proof see [Mount, page 69]
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Cell split

 2 new face records, 1 new vertex, 2+2 new  half-
edges + update pointers    … O(1)

[Berg]
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Complexity of incremental algorithm

 n insertions
 O(i) = O(n) time for one line insertion 

(Zone theorem)
=> Complexity: O(n2) + n.O(i) = O(n2)

bbox edges walked
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B. Topological plane sweep algorithm

 Complete arrangement needs O(n2) storage
 Often we need just to process each arrangement 

element just once – and we can throw it out then
 Classical Sweep line algorithm 

– needs O(n) storage
– needs log n for heap manipulation in O(n2) event points
=> O(n2 log n) algorithm

 Topological sweep line - TSL
– disperses O(log n) factor in time
– array of neighbors and a stack of ready vertices
=> O(n2) algorithm
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Illustration from Edelsbrunner & Guibas
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Topological line (curve)
(an intuitive notion)

 Monotonic curve in y-dir
 intersects each line 

exactly once 
(as a sweep line)

Cut in an arrangement A
 is an ordered sequence of edges c1, c2,…,cn in A 

(one taken from each line), such that for 1 § i § n-1, 
ci and ci+1 are incident to the same face of A and 
ci is above and ci+1 below the face

 Edges not necessarily connected (as c2 and c3)

Topological line and cut
1

2

3

4
5 Topological line
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Topological plane sweep algorithm
 Starts at the leftmost cut

– Consist of left-unbounded edges of A (ending at –¶ )
– Computed in O(n log n) time – order of slopes

 The sweep line is 
– pushed from the leftmost cut to the rightmost cut
– Advances in elementary steps 

 Elementary step
= Processing of any ready vertex

(intersection of consecutive edges at their right-point)
– Swaps the order of lines along the sweep line
– Is always possible (e.g., the point with smallest x)
– Searching of smallest x would need O(log n) time …

ready 
vertex

topological 
sweep line
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Step 0 – the leftmost cut

Topological line

1

2

3

4
5

c1

c2

c3

c4

c5

ci = ordered sequence of edges along the topological sweep line

Slope

ready
vertex

ready
vertex
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Step 1 – after processing of c4 x c5

Topological line

1

2

3

4
5

c1

c2

c3
c4 c5

Slope

ready
vertex

ready
vertex
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Step 2 – after processing of c3 x c4

1

2

3

4
5

Topological line

1

2

3

4
5

c1

c2

c3

c5

c4

Slope
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How to determine the next right point?

 Elementary step (intersection at edges right-point)
– Is always possible (e.g., the point with smallest x)
– But searching the smallest x would need O(log n) time
– We need O(1) time

 Right endpoint of the edge in the cut results from
– a line of smaller slope intersecting it from above (traced 

from L to R) or
– line of larger slope intersecting it from below.

 Use Upper and Lower Horizon Trees (UHT, LHT)
– Common segments of UHT and LHT belong to the cut
– Intersect the trees, find pairs of consecutive edges
– use the right points as legal steps (push to stack)

Slope

(22 / 55)

UHT

LHT



Upper and lower horizon tree

 Upper horizon tree (UHT)
– Insert lines in order of decreasing slope (cw)
– When two edges meet, keep the edge with higher slope

and trim the inserted edge (with lower slope)
– To get one tree and not the forest of trees (if not 

connected) add a vertical line in +¶ (slope +90°)
– Left endpoints of the edges in the cut 

do not belong to the tree

 Lower horizon tree (LHT) construction is symmetrical
 UHT and LHT serve for right endpts determination
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Upper horizon tree (UHT) – initial tree 

 Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope
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Lower horizon tree (LHT) – initial tree 

 Insert lines in order of increasing slope (“ccw”)

Topological line

1

2

3

4
5

Slope
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Overlap UHT and LHT – detect ready vertices

Topological line

1
2

3

4
5

Topological line

1
2

3

4
5

UHT LHT

6 6

Topological line

1
2

3

4
5

Overlap

6

ready
vertex

ready
vertex
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Upper horizon tree (UHT) – init. construction

 Insert lines in order of decreasing slope (cw)
 Each new line starts above all the current lines
 The uppermost face = convex polygonal chain
 Walk left to right along the chain

to determine the intersection
 Never walk twice over a segment

– Such segment is no longer part of 
the upper chain

– O(n) segments in UHT 
=> O(n) initial construction

(after n log n sorting of the lines ~slope)
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Upper horizon tree (UHT) – update 

l

Ready vertex

(28 / 55)

 After the elementary step
 Two edges swap position along 

the sweep line
 Lower edge l (lower slope, comes from above)

– Reenter to UHT
– Terminate at nearest edge of UHT
– Start in edge below in the current cut
– Traverse the face in CCW order
– Intersection must exist, as l has lower

slope than the other edge from v
and both belong to the same face



Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients – E [1:n]
2) Upper horizon tree – UHT [1:n]
3) Lower horizon tree – LHT [1:n] 
4) Order of lines cut by the sweep line – C [1:n] 
5) Edges along the sweep line – N [1:n] 
6) Stack for ready vertices (events) – S

(n number of lines)

(29 / 55)



1) Line equation coefficients E [1:n]

 Array of line equation coefs. E
– Contains coefficients ai and bi

of line equations  y = aix + bi

– E is indexed by the line index
– Lines are ordered according to 

their slope (angle from -90° to 
90°)

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

1
2

3
4
5

(6)

Ïn
di

ce
s

of
 li

ne
s

Slope
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2) and 3) – Horizon trees UHT and LHT

 Store pairs of line indices in E 
that delimit segment li to the left 
and to the right  

 Segments are half open
 Unlimited line has “indices”

(–¶ , +¶ ] (+¶ , –¶ ]
 One additional vertical line

– prevents the tree from splitting into 
forest of trees

– is inserted first and never trimmed
– is (–¶ , +¶ ] for UHT
– is (+¶ , –¶ ] for LHT

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ ∞

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ ∞

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

6 6

Their intersection is
used for searching
of legal steps
(right points)
- the shorter edge wins
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4) Order of lines cut by sweep line – C [1:n] 

 The topological sweep line cuts each line once
 Order of the cuts (along the topological sweep 

line) is stored in array C as a sequence of line 
indices

 Array C “points” to the array E 
of line equations

 For the initial leftmost cut, 
the order is the same as in E

 Index ci addresses i-th line from top
along the sweep line

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines
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5) Edges along the sweep line – N [1:n] 

 Edges intersected by the topological sweep line are 
stored here (edges along the sweep line)

 Instead of endpoints themselves, we store the
indices of lines whose intersections delimit the edge

 Order of these edges is 
the same as in C
(both use the index ci)

 Index ci stores the index 
of i-th edge from top along 
the sweep line

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 5
c5 ∞ 4

CUT edges N
Pairs of line indices
delimiting the edge 

(33 / 55)

The first edge 
along the sweep line: 
- lies on line C[c1] 
- Comes from infinity 
- is delimited by edge E[2]



6) Stack S

 The exact order of events is not important
(event = intersection in ready vertex)

 Alg. can process any of the “ready vertex”
 Event queue is therefore replaced by a stack

(faster: O(1) instead of O(log n) for queue)
 The stack stores just the upper edge ci

from the pair intersecting in ready vertex
 Intersection in the ready vertex

is computed between stored ci and ci+1
c4

c1

Stack S
Ready vertex 
first edge idx

(34 / 55)

c4 x c5
c1 x c2



Topological sweep line demo

Input 
 set of lines L in the plane
 ordered in increasing slope 

( -90° to 90°), simple, 
not vertical 

 line parameters in array E

1
2

3
4
5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

(35 / 55)

Slope
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1) Initial leftmost cut - C

 Store the indices of lines in E 
into the Cut lines array C
in increasing slope order

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

(36 / 55)
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1) Initial leftmost cut - N

 Prepare array N for endpoints of
the cutted edges (resp. for line 
indices delimiting these edges)

 Init it by line “ends” ∞, ∞

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 ∞ ¶

c2 ∞ ¶

c3 ∞ ¶

c4 ∞ ¶

c5 ∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
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2a) Compute Upper Horizon Tree - UHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 3
c4 4
c5 5

c1 ∞ ¶

c2 ∞ ¶

c3 ∞ ¶

c4 ∞ ¶

c5 ∞ ¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
Topological line

1
2

3
4
5

6

UHT

Inserted first, never changed

(38 / 55)

Order of 
insertion 
into UHT



2b) Compute Lower Horizon Tree - LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 ∞ ¶

c2 ∞ ¶

c3 ∞ ¶

c4 ∞ ¶

c5 ∞ ¶

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ –¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

Inserted first, never changed

(39 / 55)

Order of 
insertion 
into LHT



Intersect the trees – take the shorter edge

3a) Determine right delimiters of edges - N

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 5
c5 ∞ 4

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ –¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

c4

c1

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 5
c5 ∞ 4

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ –¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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4a) Pop ready vertex from S – process c4 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 4
c5 5

c1

c2

c3
c4

c5

c4

c1

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 5
c5 ∞ 4

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ –¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4 c1

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 4
c5 ∞ 5

1 ∞ 6
2 ∞ 1
3 ∞ 1
4 ∞ 3
5 ∞ 4
6 ∞ –¶

1 ∞ 2
2 ∞ 5
3 ∞ 5
4 ∞ 5
5 ∞ 6
6 ∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4 c1

c1 ∞ 2
c2 ∞ 1
c3 ∞ 5
c4 ∞ 4
c5 ∞ 5

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
partTopological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

(44 / 55)
Note:            Edges are half open to prevent the tree after reinsertion



Intersct the trees

4d) Determine new cut edges endpoints – N 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersect the trees – take the shorter edge
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4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c3

c1

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c3

c1

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6
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4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 5
c4 3
c5 4

c1

c2

c3

c5

c3

c1

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

c4

6 6

(48 / 55)



4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c3

c1

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4
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4d) Determine new cut edges endpoints

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c3

c1

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

Intersect the trees – take the shorter edge

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c3

c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c4

c1

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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Input:
Output:

Topological sweep algorithm
TopoSweep(L)

Set of lines L sorted by slope (-90° to 90°), simple, not vertical
All parts of an Arrangement A(L) detected and then destroyed

1. Let C be the initial (leftmost) cut – lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:

a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope

3. By consulting UHT and LHT 
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack S

(ready vertices)
4. Repeat until stack not empty

a) Pop next ready vertex from stack S (its upper edge ci ) 
b) Swap these lines within the cut C (ci <-> ci+1 )
c) Update the horizon trees UHT and LHT (reenter edge parts )
d) Consulting UHT and LHT determine new cut edges endpoints N
e) If new neighboring edges share an endpoint -> push them on S

Slope



Determining cut edges from UHT and LHT

 for lines i = 1 to n
– Compare UHT and  LHT edges on line i
– Set the cut lying on edge i to the shorter edge of these 

 Order of the cuts along the sweep line
– Order changes at the intersection v only (neighbors)
– Order of remaining cuts not incident with intersection v

does not change

 After changes of the order, test the new neighbors 
for intersections

– Store intersections right from sweep line into the stack
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Complexity

 O(n2) intersections  
=> O(n2) events (elementary steps)

 O(1) amortized time for one step – 4c) 

=> O(n2) time for the algorithm

Amortized time 
=  even though a single elementary step can take 

more than O(1) time, the total time needed to 
perform O(n2) elementary steps is O(n2), hence 
the average time for each step is O(1).
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