PETR FELKEL<br>FEL CTU PRAGUE<br>felkel@fel.cvut.cz<br>https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start<br>Based on [Berg], [Mount]

Version from 10.12.2014

## Talk overview

- Arrangements of lines
- Incremental construction
- Topological plane sweep


(2/55)


## Arrangements

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on arrangement of lines in plane
- Typical application: problems of point sets in dual plane (collinear points, point on circles, ...)


## Line arrangement

- A finite set $L$ of lines subdivides the plane into a cell complex, called arrangement $A(L)$
- In plane, arrangement defines a planar graph
- Vertices - intersections of (2 or more) lines
- Edges - intersection free segments (or rays or lines)
- Faces - convex regions containing no line



## Line arrangement

- Simple arrangement assumption
= no three lines intersect in a single point
- Can be solved by careful implementation or symbolic perturbation


## Line arrangement

- Formal problem: graph must have bounded edges
- Topological fix: add vertex in infinity
- Geometrical fix: BBOX, often enough as abstract with corners $\{-\infty,-\infty\},\{\infty, \infty\}$

bounding box
(6/55)


## Combinatorial complexity of line arrangement

- $O\left(n^{2}\right)$
- Given $n$ lines in general position, max numbers are - Vertices $\binom{n}{2}=\frac{n(n-1)}{2}$ - each line intersect $n-1$ others
- Edges $n^{2}$
- $n-1$ intersections create $n$ edges on each of $n$ lines
- Faces $\frac{n(n+1)}{2}+1=\binom{n}{2}+n+1 \begin{array}{ll}\mathrm{f}_{0}=1 \\ & \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+n\end{array} \quad$ (celá rovina)
$\mathrm{f}_{2}=4 \ll \mathrm{f}_{\mathrm{n}}=\mathrm{f}_{0}^{\mathrm{n}=1}+\sum_{i=1}^{n=2} \mathrm{i}=\frac{n(n+1)}{\mathrm{n}=3}+1$


## Construction of line arrangement

(0. Plane sweep method)

- $\mathrm{O}\left(n^{2} \log n\right)$ time and $\mathrm{O}(n)$ storage plus $O\left(n^{2}\right)$ storage for the arrangement (log $n$ - heap \& BVS access, $\mathrm{n}^{2}$ vertices, edges, faces)
A. Incremental method
$-\mathrm{O}\left(n^{2}\right)$ time and $\mathrm{O}\left(n^{2}\right)$ storage
- Optimal method
B. Topological plane sweep
- O( $n^{2}$ ) time and $\mathrm{O}(n)$ storage only
- Does not store the result arrangement
- Useful for applications that may throw out the

DCGI


## A. Incremental construction of arrangement

- $O\left(n^{2}\right)$ time, $O\left(n^{2}\right)$ space
~size of arrangement => it is an optimal algorithm
- Not randomized - depends on $n$ only, not on order
- Add line $l_{i}$ one by one ( $\mathrm{i}=1$.. $n$ )
- Find the leftmost intersection with BBOX among 2(i-1)+4 edges on the BBOX ...O(i)
- Trace the line through the arrangement $A\left(L_{i-1}\right)$ and split the intersected faces
...O(i) - why? See later
- Update the subdivision (cell split)
- Altogether $\mathrm{O}(n i)=O\left(n^{2}\right)$


## A. Incremental construction of arrangement

## Arrangement( L )

Input: $\quad$ Set of lines $L$ in general position (no 3 intersect in 1 common point) Output: Line arrangement $A(L)$ (resp. part of the arrangement stored in BBOX $B(L)$ containing all the vertices of $A(L))$

1. Compute the BBOX $B(L)$ containing all the vertices of $A(L) \quad \ldots O\left(n^{2}\right)$
2. Construct DCEL for the subdivision induced by BBOX $B(L)$...O(1)
3. for $i=1$ to $n$ do // insert line $I_{i}$
4. find edge $e$, where line $l_{i}$ intersects the BBOX of $2(i-1)+4$ edges $\ldots \mathrm{O}(i)$
5. $\quad f=$ bounded face incident to the edge $e$
6. while $f$ is in $B(L) \quad$ (bounded face $f=f$ is in the BBOX) split $f$ and set $f$ to be the next intersected face across the intersected edge
7. update the DCEL (split the cell)


See later

## Tracing the line through the arrangement

- Walk around edges of current face (face walking)
- Determine if the line $I_{i}$ intersects current edge $e$
- When intersection found, jump to the face on the other side of this edge e


The zone of I
n=8 lines, 7 faces in the zone, 22 edges tested of max 48


Walking the lower part
[Berg] of the zone

## Tracing the line through the arrangement

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be O(i²) traversed edges (i faces, $i$ lines per face, $i^{2}$ edges)
- According to the Zone theorem, it is $\mathrm{O}(i)$ edges only!
Zone theorem
$=$ given an arrangement $A(L)$ of $n$ lines in the plane and given any line I in the plane, the total number of edges in all the cells of the zone $Z_{A}(L)$ is at



## Cell split

- 2 new face records, 1 new vertex, 2+2 new halfedges + update pointers ... O(1)




## Complexity of incremental algorithm

- n insertions
- $O(i)=O(n)$ time for one line insertion
(Zone theorem)
=> Complexity: $\mathrm{O}\left(n^{2}\right)+\mathrm{n} . \mathrm{O}(i)=\mathrm{O}\left(n^{2}\right)$
bbox edges walked
$\qquad$


## B. Topological plane sweep algorithm

- Complete arrangement needs $\mathrm{O}\left(n^{2}\right)$ storage
- Often we need just to process each arrangement element just once - and we can throw it out then
- Classical Sweep line algorithm
- needs $O(n)$ storage
- needs $\log n$ for heap manipulation in $O\left(n^{2}\right)$ event points
=> $\mathrm{O}\left(n^{2} \log n\right)$ algorithm
- Topological sweep line - TSL
- disperses $\mathrm{O}(\log n)$ factor in time
- array of neighbors and a stack of ready vertices
+立 $+\mathrm{O}\left(n^{2}\right)$ algorithm
DCGI


## Illustration from Edelsbrunner \& Guibas



## Topological line and cut

Topological line (curve) (an intuitive notion)


Cut in an arrangement A

- is an ordered sequence of edges $c_{1}, c_{2}, \ldots, c_{n}$ in $A$ (one taken from each line), such that for $1, ~ i, n-1$, $c_{i}$ and $c_{i+1}$ are incident to the same face of $A$ and
$c_{i}$ is above and $c_{i+1}$ below the face
- Edges not necessarily connected (as $c_{2}$ and $c_{3}$ )

DCGI

## Topological plane sweep algorithm

- Starts at the leftmost cut
- Consist of left-unbounded edges of $A$ (ending at - )
- Computed in $\mathrm{O}(n \log n)$ time - order of slopes
- The sweep line is
- pushed from the leftmost cut to the rightmost cut
- Advances in elementary steps
- Elementary step
= Processing of any ready vertex
 (intersection of consecutive edges at their right-point)
- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest $x$ )


## Step 0 - the leftmost cut


$c_{i}=$ ordered sequence of edges along the topological sweep line


## Step 1 - after processing of c4 x c5




## Step 2 - after processing of c3 x c4



## How to determine the next right point?

- Elementary step (intersection at edges right-point)
- Is always possible (e.g., the point with smallest $x$ )
- But searching the smallest x would need $\mathrm{O}(\log n)$ time
- We need O(1) time
- Right endpoint of the edge in the cut results from unt a line of smaller slope intersecting it from above (traced from $L$ to $R$ ) or
$\stackrel{\text { LHT line of larger slope intersecting it from below. }}{\text { lin }}$
- Use Upper and Lower Horizon Trees (UHT, LHT)
- Common segments of UHT and LHT belong to the cut
- Intersect the trees, find pairs of consecutive edges

场 $\pm$ Use the right points as legal steps (push to stack)
DCGI

## Upper and lower horizon tree

- Upper horizon tree (UHT)
- Insert lines in order of decreasing slope (cw)
- When two edges meet, keep the edge with higher slope and trim the inserted edge (with lower slope)
- To get one tree and not the forest of trees (if not connected) add a vertical line in +- (slope $+90^{\circ}$ )
- Left endpoints of the edges in the cut do not belong to the tree

- Lower horizon tree (LHT) construction is symmetrical
- UHT and LHT serve for right endpts determination
(23 / 55)


## Upper horizon tree (UHT) - initial tree

- Insert lines in order of decreasing slope ("cw")



## Lower horizon tree (LHT) - initial tree

- Insert lines in order of increasing slope ("ccw")



## Overlap UHT and LHT - detect ready vertices



## Upper horizon tree (UHT) - init. construction

- Insert lines in order of decreasing slope (cw)
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over a segment
- Such segment is no longer part of the upper chain
- O(n) segments in UHT
=> $\mathrm{O}(n)$ initial construction



## Upper horizon tree (UHT) - update

- After the elementary step
- Two edges swap position along the sweep line
- Lower edge $l$ (lower slope, comes from above)
- Reenter to UHT
- Terminate at nearest edge of UHT
- Start in edge below in the current cut
- Traverse the face in CCW order
- Intersection must exist, as l has lower slope than the other edge from $v$ and both belong to the same face



## Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients

- E [1:n]

2) Upper horizon tree

- UHT [1:n]

3) Lower horizon tree

- LHT [1:n]

4) Order of lines cut by the sweep line - $\mathrm{C}[1: n]$
5) Edges along the sweep line

- N [1:n]

6) Stack for ready vertices (events) - S
( $n$ number of lines)

DCGI

## 1) Line equation coefficients $E[1: n]$



- Array of line equation coefs. $E$
- Contains coefficients $a_{i}$ and $b_{i}$ of line equations $y=a_{i} x+b_{i}$
$-E$ is indexed by the line index
- Lines are ordered according to their slope (angle from $-90^{\circ}$ to $90^{\circ}$ )



## 2) and 3) - Horizon trees UHT and LHT

Their intersection is used for searching of legal steps (right points)

- the shorter edge wins



## 4) Order of lines cut by sweep line - C [1:n]

- The topological sweep line cuts each line once
- Order of the cuts (along the topological sweep line) is stored in array C as a sequence of line indices
- Array C "points" to the array E of line equations
- For the initial leftmost cut, the order is the same as in E
- Index ci addresses i-th line from top along the sweep line

CUT Lines C Indexes of supporting lines

| C1 | 1 |
| :---: | :---: |
| C2 | 2 |
| c3 | 3 |
| c4 | 4 |
| c5 | 5 |

## 5) Edges along the sweep line - N [1:n]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is CUT edges N the same as in C (both use the index ci)
- Index ci stores the index of $i$-th edge from top along the sweep line

Pairs of line indices
delimiting the edge

|  | c1 | $-\infty$ |
| :--- | ---: | ---: |
| c2 | $-\infty$ | 2 |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 5 |
|  | $-\infty$ | $-\infty$ |
|  | 5 | $-\infty$ |
|  |  |  |

The first edge along the sweep line:

- lies on line C[c1]
- Comes from infinity
- is delimited by edge $E[2]$


## 6) Stack S

- The exact order of events is not important (event = intersection in ready vertex)
- Alg. can process any of the "ready vertex"
- Event queue is therefore replaced by a stack (faster: $\mathrm{O}(1)$ instead of $\mathrm{O}(\log n)$ for queue) Stack
- The stack stores just the upper edge $\mathrm{c}_{\mathrm{i}}$

Ready vertex from the pair intersecting in ready vertex

- Intersection in the ready vertex is computed between stored $\mathrm{c}_{\mathrm{i}}$ and $\mathrm{c}_{\mathrm{i}+1}$

| $\mathrm{c} 4 \times \mathrm{c} 5$ |
| :--- |
| $\mathrm{c} 1 \times \mathrm{c} 2$ |$\xrightarrow[++{ }_{+}^{+}+{ }_{+}^{+}+]{+}+$| c 4 |
| :---: |
| c 1 |

## Topological sweep line demo



Input

- set of lines $L$ in the plane
- ordered in increasing slope ( $\angle-90^{\circ}$ to $90^{\circ}$ ), simple, not vertical
- line parameters in array E


## 1) Initial leftmost cut - C



- Store the indices of lines in E into the Cut lines array $C$ in increasing slope order

CUT Lines C<br>Indexes of sup-<br>porting lines



## 1) Initial leftmost cut - N



Array of line equations E
$y=a_{i} x+b$

| 1 | $\mathrm{a}_{1}$ | $\mathrm{b}_{1}$ |
| :---: | :---: | :---: |
| 2 | $\mathrm{a}_{2}$ | $\mathrm{b}_{2}$ |
| 3 | $\mathrm{a}_{3}$ | $\mathrm{b}_{3}$ |
| 4 | $\mathrm{a}_{4}$ | $\mathrm{b}_{4}$ |
| 5 | $\mathrm{a}_{5}$ | $\mathrm{b}_{5}$ |

- Prepare array $N$ for endpoints of the cutted edges (resp. for line indices delimiting these edges)
- Init it by line "ends" $-\infty,+\infty$

CUT edges N CUT Lines C
Pairs of line indices Indexes of sup-
delimiting the edge porting lines

| c1 | $-\infty$ | - | c1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| c2 | $-\infty$ | - | c2 | 2 |
| c3 | $-\infty$ | - | c3 | 3 |
| c4 | $-\infty$ | - | c4 | 4 |
| c5 | $-\infty$ | - | c5 | 5 |

indices of lines

## 2a) Compute Upper Horizon Tree - UHT



UHT array
Delimiting
lines indices

|  | $-\infty$ | 2 |
| ---: | ---: | ---: |
| 2 | $-\infty$ | 5 |
| 3 | $-\infty$ | 5 |
| 4 | $-\infty$ | 5 |
| 5 | $-\infty$ | 6 |
| 6 | $-\infty$ | +- |

CUT edges $N$
Pairs of line indices
delimiting the edge

|  | c1 | $-\infty$ |
| :--- | :--- | :--- |
| c2 | $-\infty$ | - |
|  | $-\infty$ | - |
| c3 | $-\infty$ | - |
| c4 | $-\infty$ | - |
|  | $-\infty$ | - |
|  |  |  |

CUT Lines C
Indexes of supporting lines


$$
(38 / 55)
$$

## 2b) Compute Lower Horizon Tree - LHT



## 3a) Determine right delimiters of edges -N



Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

| 1 | $\mathrm{a}_{1}$ | $\mathrm{~b}_{1}$ |
| :--- | :--- | :--- |
|  | $\mathrm{a}_{2}$ | $\mathrm{~b}_{2}$ |
|  | $\mathrm{a}_{3}$ | $\mathrm{~b}_{3}$ |
| 4 | $\mathrm{a}_{4}$ | $\mathrm{~b}_{4}$ |
|  | $\mathrm{a}_{5}$ | $\mathrm{~b}_{5}$ |
|  |  |  |


|  | $-\infty$ | 2 |
| ---: | ---: | ---: |
|  | $-\infty$ | 5 |
| 3 | $-\infty$ | 5 |
| 4 | $-\infty$ | 5 |
| 5 | $-\infty$ | 6 |
| 6 | $-\infty$ | +- |

LHT array Delimiting lines indices

| 1 | $-\infty$ | 6 |
| ---: | ---: | ---: |
| 2 | $-\infty$ | 1 |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 3 |
|  | $-\infty$ | 4 |
| 6 | $+\infty$ | - |

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of supporting lines

Ready vertex first edge idx

| c1 | $-\infty$ | 2 | c1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| c2 | $-\infty$ | 1 | c2 | 2 |
| c3 | $-\infty$ | 5 | c3 | 3 |
| c4 | $-\infty$ | 5 | c4 | 4 |
| c5 | $-\infty$ | 4 | c5 | 5 |

## 3b) Ready vertices $=$ inters. of neighbors $-S$



| Array of line equations$y=a_{i} x+b$ |  |  | UHT array Delimiting lines indices |  |  | LHT array Delimiting lines indices |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{a}_{1}$ | $\mathrm{b}_{1}$ | 1 | $-\infty$ | 2 | 1 | $-\infty$ | 6 |
| 2 | $\mathrm{a}_{2}$ | $\mathrm{b}_{2}$ | 2 | $-\infty$ | 5 | 2 | $-\infty$ | 1 |
| 3 | $\mathrm{a}_{3}$ | $\mathrm{b}_{3}$ | 3 | $-\infty$ | 5 | 3 | $-\infty$ | 1 |
| 4 | $\mathrm{a}_{4}$ | $\mathrm{b}_{4}$ | 4 | $-\infty$ | 5 | 4 | $-\infty$ | 3 |
| 5 | $\mathrm{a}_{5}$ | $\mathrm{b}_{5}$ | 5 | $-\infty$ | 6 | 5 | $-\infty$ | 4 |
|  |  |  | 6 | $-\infty$ | +- | 6 | $+\infty$ | - |

Compute intersections of neighbors - push into stack (41 / 55)

## 4a) Pop ready vertex from S - process c4



Array of line UHT array equations $E$

Delimiting
lines indices

|  | $-\infty$ | $-\infty$ |
| ---: | ---: | ---: |
|  | $-\infty$ | 5 |
| 3 | $-\infty$ | 5 |
| 4 | $-\infty$ | 5 |
|  | $-\infty$ | 6 |
| 6 | $-\infty$ | +- |


| 1 | $-\infty$ | 6 |
| ---: | ---: | ---: |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 3 |
|  | $-\infty$ | 4 |
|  | $+\infty$ | - |
|  |  |  |


| c1 | $-\infty$ | 2 |
| :--- | :--- | :--- |
| c2 | $-\infty$ | 1 |
| c3 | $-\infty$ | 5 |
| c4 | $-\infty$ | 5 |
| $c 5$ | $-\infty$ | 4 |


| c1 | 1 |
| :---: | :---: |
| c2 | 2 |
| c3 | 3 |
| c4 | 4 |
| c5 | 5 |



## 4b) Swap lines c4 and c5 - swap 4 and 5

 equations $E$

Delimiting
lines indices
$y=a_{i} x+b$


|  | $-\infty$ | 2 |
| ---: | ---: | ---: |
| 2 | $-\infty$ | 5 |
| 3 | $-\infty$ | 5 |
| 4 | $-\infty$ | 5 |
|  | $-\infty$ | 6 |
| 6 | $-\infty$ | +- |


|  | $-\infty$ | 6 |
| ---: | ---: | ---: |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 1 |
|  | $-\infty$ | 3 |
|  | $-\infty$ | 4 |
|  | $+\infty$ | - |
|  |  |  |


|  | c1 | $-\infty$ |
| :--- | :--- | :--- |
| c2 | $-\infty$ | 2 |
| c4 | $-\infty$ | 1 |
| c3 | $-\infty$ | 5 |
| c4 | $-\infty$ | 4 |
| c5 | $-\infty$ | 5 |
|  |  |  |


|  | 1 |
| :--- | :--- |
| c1 | 1 |
|  | 2 |
| c3 | 3 |
|  | 2 |
| c4 | 5 |
|  | 4 |
|  |  |



## 4c) Update the horizon trees - UHT and LHT



Array of line UHT array equations E

Delimiting
lines indices


| 1 | - | 2 |
| ---: | ---: | ---: |
| 2 | - | 5 |
|  | - | - |
|  | - | 5 |
|  | 5 | 6 |
|  | 4 | 6 |
|  | - | +- |
|  |  |  |


| 1 | - | 6 |
| :--- | ---: | ---: |
| 2 | - | 1 |
|  | - | 1 |
|  | $\mathbf{5}$ | 3 |
|  | 4 | 3 |
| 6 | +- | - |
|  |  |  |

## CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of supdelimiting the edge Ready vertex upper edge id>

|  | c1 | $-\infty$ |
| :--- | :--- | :--- |
|  | $-\infty$ | 2 |
| c2 | $-\infty$ | 1 |
| c3 | $-\infty$ | 5 |
| c4 | $-\infty$ | 4 |
| c5 | $-\infty$ | 5 |
|  |  |  |


| c1 | 1 |
| :--- | :--- |
| c2 | 2 |
| c3 | 3 |
| c4 | 5 |
|  | 4 |
|  |  |



## 4d) Determine new cut edges endpoints - N



Array of line UHT array equations E

Delimiting lines indices


LHT array Delimiting lines indices


CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup porting lines


Ready vertex upper edge id>



## 4e) Intersect with neighbors - push into $S$



Array of line UHT array equations E

Delimiting lines indices
$y=a_{i} x+b$

|  | $a_{1}$ | $b_{1}$ |
| :--- | :--- | :--- |
| 2 | $a_{2}$ | $b_{2}$ |
| 3 | $a_{3}$ | $b_{3}$ |
| 4 | $a_{4}$ | $b_{4}$ |
|  | $a_{5}$ | $b_{5}$ |
|  |  |  |


| 1 | - | 2 |
| ---: | ---: | ---: |
| 2 | - | 5 |
| 3 | - | 5 |
| 4 | 5 | 6 |
|  | 4 | 6 |
| 6 | - | +- |
|  |  |  |


|  | - | 6 |
| ---: | ---: | ---: |
| 2 | - | 1 |
|  | - | 1 |
| 4 | - | 1 |
|  | 5 | 3 |
|  | 4 | 3 |
|  | +- | - |
|  |  |  |

## CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup- Ready vertex delimiting the edge porting lines upper edge id>



Intersections of neighbors - into stack

## 4a) Pop ready vertex from S - process c3



Array of line UHT array equations E

Delimiting
lines indices


LHT array Delimiting lines indices

| 1 | - | 6 |
| ---: | ---: | ---: |
|  | - | - |
| 3 | - | 1 |
|  | - | 1 |
|  | 5 | 3 |
|  | 4 | 3 |
|  | +- | - |
|  |  |  |

CUT edges N CUT Lines C Stack S Pairs of line indices
delimiting the edge

Indexes of supporting lines

| c1 | - | 2 |
| :--- | ---: | ---: |
| c2 | - | 1 |
| c3 | - | 5 |
| c4 | 4 | 3 |
| c5 | 5 | 3 |
|  |  |  |


| c1 | 1 |
| :--- | :--- |
| c2 | 2 |
| c3 | 3 |
| c4 | $\mathbf{5}$ |
| c5 | 4 |
|  |  |
|  |  |


$+$
c3

## 4b) Swap lines c4 and c5 - swap 4 and 5



## 4c) Update the horizon trees - UHT and LHT



Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

|  | $a_{1}$ | $b_{1}$ |
| :--- | :--- | :--- |
| 2 | $a_{2}$ | $b_{2}$ |
| 3 | $a_{3}$ | $b_{3}$ |
|  | $a_{4}$ | $b_{4}$ |
|  | $a_{5}$ | $b_{5}$ |
|  |  |  |


| 1 | - | 2 |
| ---: | ---: | ---: |
| 2 | - | 5 |
| 3 | 5 | 4 |
| 4 | 5 | 6 |
|  | 3 | 6 |
| 6 | - | +- |
|  |  |  |


| 1 | - | 6 |
| ---: | ---: | ---: |
|  | - | - |
| 3 | 5 | 1 |
|  | 5 | 3 |
|  | 3 | 1 |
|  | +- | - |
|  |  |  |

CUT edges N CUT Lines C Stack S delimiting the edge porting lines first edge idx

LHT array
Delimiting lines indices

| c1 | - | 2 |
| :--- | ---: | ---: |
| c2 | - | 1 |
| c3 | 4 | 3 |
| c4 | - | 5 |
| c5 | 5 | 3 |
|  |  |  |


| c1 | 1 |
| :--- | :--- |
| c2 | 2 |
| $c 3$ | 5 |
| $c 4$ | 3 |
| c5 | 4 |
|  |  |



## 4d) Determine new cut edges endpoints



## 4e) Intersect with neighbors - push into $S$



Array of line UHT array equations E

Delimiting
lines indices
$y=a_{i} x+b$

| 1 | $\mathrm{a}_{1}$ | $\mathrm{~b}_{1}$ |
| :--- | :--- | :--- |
| 2 | $\mathrm{a}_{2}$ | $\mathrm{~b}_{2}$ |
| 3 | $\mathrm{a}_{3}$ | $\mathrm{~b}_{3}$ |
| 4 | $\mathrm{a}_{4}$ | $\mathrm{~b}_{4}$ |
| 5 | $\mathrm{a}_{5}$ | $\mathrm{~b}_{5}$ |
|  |  |  |


| 1 | - | 2 |
| ---: | ---: | ---: |
| 2 | - | 5 |
| 3 | $\mathbf{5}$ | $\mathbf{4}$ |
| 4 | 5 | 6 |
|  | 3 | 6 |
|  | - | +- |
|  |  |  |

LHT array Delimiting lines indices

| 1 | - | 6 |
| ---: | ---: | ---: |
| 2 | - | 1 |
|  | 5 | 1 |
| 4 | 5 | 3 |
|  | 3 | 1 |
|  | +- | - |
|  |  |  |

CUT edges N CUT Lines C Stack S Pairs of line indices Indexes of sup- Ready vertex delimiting the edge porting lines first edge idx

## Topological sweep algorithm

TopoSweep(L)
Slope
Input: $\quad$ Set of lines $L$ sorted by slope ( $-90^{\circ}$ to $90^{\circ}$ ), simple, not vertical Output: All parts of an Arrangement $A(L)$ detected and then destroyed

1. Let $C$ be the initial (leftmost) cut - lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:
a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope
3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoints into stack $S$ (ready vertices)
4. Repeat until stack not empty
a) Pop next ready vertex from stack $S$ (its upper edge $c_{i}$ )
b) Swap these lines within the cut $C \quad\left(c_{i}<->c_{i+1}\right)$
c) Update the horizon trees UHT and LHT (reenter edge parts )
d) Consulting UHT and LHT determine new cut edges endpoints N


## Determining cut edges from UHT and LHT

- for lines $i=1$ to $n$
- Compare UHT and LHT edges on line $i$
- Set the cut lying on edge $i$ to the shorter edge of these
- Order of the cuts along the sweep line
- Order changes at the intersection $v$ only (neighbors)
- Order of remaining cuts not incident with intersection $v$ does not change
- After changes of the order, test the new neighbors for intersections
- Store intersections right from sweep line into the stack
(53 / 55)


## Complexity

- $O\left(n^{2}\right)$ intersections
=> $O\left(n^{2}\right)$ events (elementary steps)
- O(1) amortized time for one step -4c)
=> $O\left(n^{2}\right)$ time for the algorithm


## Amortized time

= even though a single elementary step can take more than $\mathrm{O}(1)$ time, the total time needed to perform $O\left(n^{2}\right)$ elementary steps is $O\left(n^{2}\right)$, hence the average time for each step is $O(1)$.

DCGI

## References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., http://www.cs.uu.ni/geobook/
[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtm
[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR9.pdf
[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, SpringerVerlag, Berlin, Germany, pages 155-156.
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf


