

ARRANGEMENTS (uspořádání)

PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 10.12.2014

Talk overview

Arrangements of lines

- Incremental construction
- Topological plane sweep
- Duality next lesson

Arrangements

- The next most important structure in CG after CH, VD, and DT
- Possible in any dimension arrangement of (d-1)-dimensional hyperplanes
- We concentrate on arrangement of lines in plane
- Typical application: problems of point sets in dual plane (collinear points, point on circles, ...)

Line arrangement

- A finite set L of lines subdivides the plane into a cell complex, called arrangement A(L)
- In plane, arrangement defines a planar graph
 - Vertices intersections of (2 or more) lines
 - Edges intersection free segments (or rays or lines)
 - Faces convex regions containing no line (possibly unbounded)

Line arrangement

- Simple arrangement assumption
 - = no three lines intersect in a single point
 - Can be solved by careful implementation or symbolic perturbation

Line arrangement

• Formal problem: graph must have bounded edges

- Topological fix: add vertex in infinity
- Geometrical fix: BBOX, often enough as abstract with corners $\{-\infty, -\infty\}, \{\infty, \infty\}$

Combinatorial complexity of line arrangement

- O(n²)
- Given n lines in general position, max numbers are - Vertices $\binom{n}{2} = \frac{n(n-1)}{2}$ - each line intersect n – 1 others - n-1 intersections create n edges Edges n^2 on each of *n* lines - Faces $\frac{n(n+1)}{2} + 1 = {n \choose 2} + n + 1$ $f_0 = 1$ (celá rovina) $f_n = f_{n-1} + n$ $f_{n} = f_{0} + \sum_{i=1}^{n} i = \frac{n(n+1)}{2} + 1$ n=1 n=2 $f_1 = 2$ $f_2 = 4$ $f_3 = 7$ + + + + + + + + + + + + + +

Construction of line arrangement

(0. Plane sweep method)

- O(n² log n) time and O(n) storage
 plus O(n²) storage for the arrangement
 (log n heap & BVS access, n² vertices, edges, faces)
- A. Incremental method
 - $O(n^2)$ time and $O(n^2)$ storage
 - Optimal method
- B. Topological plane sweep
 - $O(n^2)$ time and O(n) storage only
 - Does not store the result arrangement
 - Useful for applications that may throw out the

+ + + + + +

A. Incremental construction of arrangement

- O(n²) time, O(n²) space
 ~size of arrangement => it is an optimal algorithm
- Not randomized depends on n only, not on order
- Add line l_i one by one (i = 1 ... n)
 - Find the leftmost intersection with BBOX among 2(*i*-1)+4 edges on the BBOX ...O(i)
 - Trace the line through the arrangement $A(L_{i-1})$ and split the intersected facesO(i) – why? See later
 - Update the subdivision (cell split)O(1)
- Altogether $O(ni) = O(n^2)$ $= \frac{1}{2} + \frac{1}{2} +$

A. Incremental construction of arrangement

Arrangement(*L*)

Input: Set of lines *L* in general position (no 3 intersect in 1 common point) *Output:* Line arrangement A(L) (resp. part of the arrangement stored in BBOX B(L) containing all the vertices of A(L))

Tracing the line through the arrangement

- Walk around edges of current face (face walking)
- Determine if the line *I_i* intersects current edge *e*
- When intersection found, jump to the face on the other side of this edge e

Tracing the line through the arrangement

- Number of traversed edges determines the insertion complexity
- Naïve estimation would be O(i²) traversed edges
 (*i* faces, *i* lines per face, i² edges)
- According to the Zone theorem, it is O(*i*) edges only!

Zone theorem

= given an arrangement A(L) of *n* lines in the plane and given any line *l* in the plane, the total number of edges in all the cells of the zone $Z_A(L)$ is at

 most 6n.
 For proof see [Mount, page 69]

 DCGI
 For proof see [Mount, page 69]

Cell split

 2 new face records, 1 new vertex, 2+2 new halfedges + update pointers ... O(1)

Complexity of incremental algorithm

- n insertions
- O(*i*) = O(n) time for one line insertion (Zone theorem)
- => Complexity: $O(n^2) + n.O(i) = O(n^2)$

B. Topological plane sweep algorithm

- Complete arrangement needs $O(n^2)$ storage
- Often we need just to process each arrangement element just once – and we can throw it out then
- Classical Sweep line algorithm
 - needs O(n) storage

O(n²) algorithm

- needs log *n* for heap manipulation in $O(n^2)$ event points
- $=> O(n^2 \log n)$ algorithm
- Topological sweep line TSL
 - disperses O(log n) factor in time
 - array of neighbors and a stack of ready vertices

+ + + + +

Illustration from Edelsbrunner & Guibas

Topological line and cut

- Topological line (curve) (an intuitive notion)
- Monotonic curve in y-dir
- intersects each line exactly once (as a sweep line)

Cut in an arrangement A

is an ordered sequence of edges c₁, c₂,...,c_n in A (one taken from each line), such that for 1 _ i _ n-1, c_i and c_{i+1} are incident to the same face of A and c_i is above and c_{i+1} below the face
 Edges not necessarily connected (as c₂ and c₃)

Topological plane sweep algorithm

Starts at the leftmost cut

- Consist of left-unbounded edges of A (ending at)
- Computed in $O(n \log n)$ time order of slopes
- The sweep line is
 - pushed from the leftmost cut to the rightmost cut

topological

sweep line

Advances in elementary steps

Elementary step

= Processing of any *ready vertex* (intersection of consecutive edges at their right-point)

ready vertex

- Swaps the order of lines along the sweep line
- Is always possible (e.g., the point with smallest x)
- Searching of smallest x would need O(log n) time

Step 1 – after processing of c4 x c5

Step 2 – after processing of c3 x c4

How to determine the next right point?

- Elementary step (intersection at edges right-point)
 - Is always possible (e.g., the point with smallest x)
 - But searching the smallest x would need O(log n) time
 - We need O(1) time
- Right endpoint of the edge in the cut results from
 - Intersecting it from above (traced from L to R) or

LHT line of *larger slope* intersecting it *from below*.

- Use Upper and Lower Horizon Trees (UHT, LHT)
 - Common segments of UHT and LHT belong to the cut
 - Intersect the trees, find pairs of consecutive edges

 $-\neq \pm$ use the right points as legal steps (push to stack)

Upper and lower horizon tree

- Upper horizon tree (UHT)
 - Insert lines in order of decreasing slope (cw)
 - When two edges meet, keep the edge with higher slope and trim the inserted edge (with lower slope)
 - To get one tree and not the forest of trees (if not connected) add a vertical line in +— (slope +90°)
 - Left endpoints of the edges in the cut
 do not belong to the tree
- Lower horizon tree (LHT) construction symmetrical

+ + + + +

UHT and LHT serve for right endpts determination

Upper horizon tree (UHT) – initial tree

Insert lines in order of decreasing slope ("cw")

Lower horizon tree (LHT) – initial tree

Insert lines in order of increasing slope ("ccw")

Overlap UHT and LHT – detect ready vertices

Upper horizon tree (UHT) – init. construction

new line

- Insert lines in order of decreasing slope (cw)
- Each new line starts above all the current lines
- The uppermost face = convex polygonal chain
- Walk left to right along the chain to determine the intersection
- Never walk twice over a segment `
 - Such segment is no longer part of the upper chain
 - O(n) segments in UHT
 - => O(n) initial construction
 - (after n log *n* sorting of the lines ~slope)

Upper horizon tree (UHT) – update

Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients - E [1:n] 2) Upper horizon tree – UHT [1*:n*] 3) Lower horizon tree – LHT [1*:n*] Order of lines cut by the sweep line – C [1:n] Edges along the sweep line - N [1:n] 6) Stack for ready vertices (events) – S (*n* number of lines) +

1) Line equation coefficients *E* [1:*n*]

Array of line

equations E

Array of line equation coefs. E

- Contains coefficients a_i and b_i of line equations $y = a_i x + b_i$
- E is indexed by the line index
- Lines are ordered according to their slope (angle from -90° to 90°)

2) and 3) – Horizon trees UHT and LHT

4) Order of lines cut by sweep line – C [1:n]

- The topological sweep line cuts each line once
- Order of the cuts (along the topological sweep line) is stored in array C as a sequence of line indices

5) Edges along the sweep line – N [1:*n*]

- Edges intersected by the topological sweep line are stored here (edges along the sweep line)
- Instead of endpoints themselves, we store the indices of lines whose intersections delimit the edge
- Order of these edges is the same as in C (both use the index *ci*)
- Index *ci* stores the index ^{c2}
 of *i-th* edge from top along ^{c3}
 the sweep line ^{c3}

CUT edges N Pairs of line indices delimiting the edge

c1

+ + + + +

6) Stack S

- The exact order of events is not important (event = intersection in ready vertex)
- Alg. can process any of the "ready vertex"
- Event queue is therefore replaced by a stack (faster: O(1) instead of O(log n) for queue) Stack S

Ready vertex

first edge idx

- The stack stores just the upper edge c_i from the pair intersecting in ready vertex
- Intersection in the ready vertex is computed between stored c_i and c_{i+1}

c4 x c5

Topological sweep line demo

set of lines L in the plane

- ordered in increasing slope
 (∠ -90° to 90°), simple,
 not vertical
- line parameters in array E

1) Initial leftmost cut - C

1) Initial leftmost cut - N

2a) Compute Upper Horizon Tree - UHT

2b) Compute Lower Horizon Tree - LHT

3a) Determine right delimiters of edges - N

3b) Ready vertices = inters. of neighbors – S

4a) Pop ready vertex from S – process c4

4b) Swap lines c4 and c5 – swap 4 and 5

4c) Update the horizon trees – UHT and LHT

4d) Determine new cut edges endpoints – N

4e) Intersect with neighbors – push into S

4a) Pop ready vertex from S – process c3

4b) Swap lines c4 and c5 – swap 4 and 5

4c) Update the horizon trees – UHT and LHT

4d) Determine new cut edges endpoints

4e) Intersect with neighbors – push into S

Topological sweep algorithm

TopoSweep(L)

Input: Set of **lines** *L* **sorted by slope (-90° to 90°**), simple, not vertical *Output:* All parts of an **Arrangement** A(L) detected and then destroyed

Slope

- 1. Let C be the initial (leftmost) cut lines in increasing order of slope
- 2. Create the initial UHT and LHT incrementally:
 - a) UHT by inserting lines in decreasing order of slope
 - b) LHT by inserting lines in increasing order of slope
- 3. By consulting UHT and LHT
 - a) Determine the right endpoints N of all edges of the initial cut C
 - b) Store neighboring lines with common endpoints into stack S (ready vertices)
- 4. Repeat until stack not empty
 - a) Pop next ready vertex from stack S (its upper edge c_i)
 - b) Swap these lines within the cut C ($c_i < -> c_{i+1}$)
 - c) Update the horizon trees UHT and LHT (reenter edge parts) +
 - d) Consulting UHT and LHT determine new cut edges endpoints N
 - If new neighboring edges share an endpoint -> push them or S

* + + * * + + + * + + * *

Determining cut edges from UHT and LHT

- for lines i = 1 to n
 - Compare UHT and LHT edges on line *i*
 - Set the cut lying on edge *i* to the shorter edge of these
- Order of the cuts along the sweep line
 - Order changes at the intersection v only (neighbors)
 - Order of remaining cuts not incident with intersection v does not change
- After changes of the order, test the new neighbors for intersections
 - Store intersections right from sweep line into the stack

Complexity

- O(n²) intersections
 => O(n²) events (elementary steps)
- O(1) amortized time for one step 4c)
 => O(n²) time for the algorithm

Amortized time

= even though a single elementary step can take more than O(1) time, the total time needed to perform $O(n^2)$ elementary steps is $O(n^2)$, hence the average time for each step is O(1).

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 8., <u>http://www.cs.uu.nl/geobook/</u>
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 8,15,16,31, and 32. <u>http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml</u>
- [Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. TR 9, 1986, Digital <u>www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-9.pdf</u>

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate cases", in Proceedings of the 4th international workshop on Algorithm Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-Verlag, Berlin, Germany, pages 155-156. <u>http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf</u>

