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Talk overview

 Polygon triangulation
– Monotone polygon triangulation
– Monotonization of non-monotone polygon

 Delaunay triangulation (DT) of points
– Input: set of 2D points
– Properties
– Incremental Algorithm 
– Relation of DT in 2D and lower envelope (CH) in 3D 

and 
relation of VD in 2D to upper envelope in 3D
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Polygon triangulation problem

 Triangulation (in general)
= subdividing a spatial domain into simplices

 Application 
– decomposition of complex shapes into simpler shapes
– art gallery problem (how many cameras and where)

 We will discuss 
– a simple polygon triangulation
– without demand on triangle shapes

 Complexity of polygon triangulation
– O(n) alg. exists [Chazelle91], but it is too complicated
– practical algorithms run in O(n log n) 
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Terminology

Simple polygon
= region enclosed by a closed polygonal chain that 

does not intersect itself
Visible points 
= two points on the boundary are visible if the 

interior of the line segment joining them lies 
entirely in the interior of the polygon

Diagonal
= line segment joining any pair of visible vertices

!
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Terminology

 A polygonal chain C is strictly monotone with 
respect to line L, if any line orthogonal to L 
intersects C in at most one point

 A chain C is monotone with respect to line L, if any 
line orthogonal to L intersects C in at most one 
connected component (point, line segment,...)

 Polygon P is monotone with respect to line L, if its 
boundary (bnd(P), ∂P) can be split into two chains, 
each of which is monotone with respect to L
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Terminology

 Horizontally monotone polygon
= monotone with respect to x-axis

– Can be tested in O(n)
– Find leftmost and rightmost point in O(n)
– Split boundary to upper and lower chain
– Walk left to right, verifying that x-coord are non-

decreasing

[Mount]
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Terminology

 Every simple polygon can be triangulated
 Simple polygon with n vertices consists of

– exactly n-2 triangles
– exactly n-3 diagonals
– Each diagonal is added once 

=> O(n) sweep line algorithm exist

n = 3  => 0 diagonal n = 4  => 1 diagonal n := n+1 => n + 1 – 3  diagonals
n + 1 = 7 => 4 diagonals)

Proof by induction
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Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)
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2. Triangulation of the monotone polygon

 Sweep left to right
 Triangulate everything you can by adding 

diagonals between visible points
 Remove triangulated region from further 

consideration - DONE

[Mount]To stack
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Triangulation of the monotone polygon

[Mount]

from stack

To stack

from stack

from stack
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Main invariant

Main invariant
 Let vi be the vertex being just processed 
 The untriangulated region left of vi consists of 

two x-monotone chains (upper and lower)
 Each chain has at least one edge
 If it has more than one edge

– these edges form a reflex chain
= sequence of vertices 

with interior angle ≥ 180°
 Left vertex of the last added diagonal is u
 Vertices between u and vi are waiting in the stack

[Mount]
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Triangulation cases

[Mount]

 Case 1: vi lies on the opposite chain
– Add diagonals from next(u) to vi-1

– Set u = vi-1. Last diagonal (invariant) is vivi-1

 Case 2: v is on the same chain as vi-1
a) walk back, adding diagonals joining vi to prior vertices 

until the the angle becomes > 180° or u is reached)

– s

b) pushed to stack
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1. Polygon subdivision into monotone pieces

 X-monotonicity breaks the polygon in vertices with 
edges directed both left or both right

 The monotone polygons parts are separated by 
the splitting diagonals (joining vertex and helper)

[Mount]
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Data structures for subdivision

 Events
– Endpoints of edges, known from the beginning
– Can be stored in sorted list – no priority queue

 Sweep status
– List of edges intersecting sweep line (top to bottom)
– Stored in O(log n) time dictionary (like balanced tree)

 Event processing
– Six event types based on local structure of edges 

around vertex v
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helper(ea)
= the rightmost vertically visible processed vertex 

below edge ea on polygonal chain between edges ea & eb

is visible to every point along the sweep line between ea & eb

= vertically visible   
processed vertex

v = current vertex
(sweep line stop)

all these vertices
see the helper u 



Helper
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helper(ea)
is defined only for edges intersected by the sweep line

Previous 
helper h(e)
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Six event types of vertex v

1. Split vertex
– Find edge e above v, 

connect e with helper(e) by diagonal
– Add 2 new edges incident to v into SL status
– Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
– Find two edges incident with v in SL status
– Delete both from SL status
– Let e is edge immediately above v
– Make helper(e) = v
(Interior angle >180° for both – split & merge vertices)

[Mount]

Polygon 
interior is

white

Previous 
helper h(e)
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Six event types of vertex v

3. Start vertex
– Both incident edges lie right from v
– But interior angle <180°
– Insert both edges to SL status
– Set helper(upper edge) = v

4. End vertex 
– Both incident edges lie left from v
– But interior angle <180°
– Delete both edges from SL status
– No helper set – we are out of the polygon

[Mount]
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Six event types of vertex v

5. Upper chain-vertex
– one side is to the left, one side to the right, 

interior is below
– replace the left edge with the right edge 

in SL status
– Make v helper of the new (upper) edge

6. Lower chain-vertex
– one side is to the left, one side to the right, 

interior is above
– replace the left edge with the right edge 

in SL status
– Make v helper of the edge e above [Mount]
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Polygon subdivision complexity

 Simple polygon with n vertices can be partitioned 
into x-monotone polygons in 

– O(n log n) time and 
– O(n) storage
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Dual graph G for a Voronoi diagram
Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p
Arc connects neighboring cells
(arc for every voronoi edge)

[Berg]
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Delaunay graph DG(P)
= straight line embedding of G

(straight-line dual of Voronoi diagram)
 Node for cell V(p) is site p
 Arc (DT edge)

connecting cells
V(p) and V(q)
is the segment pq

[Борис Николаевич Делоне]

VD cell V(p)

site (point) p 
= DG node

VD vertex

DG arc

[Berg]
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Delaunay graph and Delaunay triangulation

 Delaunay graph DG(P) has convex polygonal faces
(with number of vertices ≥3, equal 
to the degree of Voronoi vertex)

 Delaunay triangulation DT(P)
= Delaunay graph for sites in 

general position
– No four sites on a circle
– Faces are triangles (Voronoi vertices have degree = 3)
– DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
– Triangulate larger faces – such triangulation is not 

unique

[Berg]

vf
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Delaunay triangulation properties 1/2
Circumcircle property
 The circumcircle of any triangle in DT is empty (no sites)

Proof: It’s center is the Voronoi vertex 
 Three points a,b,c are vertices of the same face of DG(P) 

iff circle through a,b,c contains no point of P in its interior
Empty circle property and legal edge
 Two points a,b form an edge of DG(P) – it is a legal edge

iff  closed disc with a,b on its boundary that contains no 
other point of P in its interior … disc minimal diameter = dist(a,b)

Closest pair property
 The closest pair of points in P are neighbors in DT(P)
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Delaunay triangulation properties 2/2
 DT edges do not intersect
 Triangulation T is legal, iff T is a Delaunay triangulation

(i.e., if it does not contain illegal edges)
 Edge that was legal before 

may become illegal if one 
of the triangles incident to it 
changes

 In convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd

is an illegal edge
= principle of edge flip operation

c

a

b

d

[Berg]
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Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles △abc and △cda such that 

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]
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Delaunay triangulation
 Let T be a triangulation with m triangles (and 3m angles)
 Angle-vector

= non-decreasing ordered sequence (α1, α2, … , α3m) 
angles of triangles, αi ≤ αj, for i < j

 Delaunay triangulation has the lexicographically largest 
angle sequence

– It maximizes the minimal angle (the first angle in angle-vector)
– It maximizes the second minimal angle, …
– It maximizes all angles
– It is an angle optimal triangulation



Thales’s theorem  (624-546 BC)
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 Let ܥ	= circle,
 ݈ =line intersecting ܥ in points a, ܾ	
 ,݌ ,ݍ ,ݎ ݏ = points on the same 

side of ݈
p,q on ܥ	ݎ , is in, ݏ is out

 Then for the angles holds:∢ܾܽݎ > ܾ݌ܽ∢ = ܾݍܽ∢ > ܾݏܽ∢
http://www.mathopenref.com/arccentralangletheorem.html

Respective Central Angle Theorem

[Berg]
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Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

θ1 > θ2 > θ3

bd < ac φab > θab φbc > θbc φcd > θcd φda > θda

flip(ac)

=> After limited number of edge flips 
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd
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Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
– must be larger than the largest circle through 3 points
– will be discarded at the end

2. Insert the points in random order
– Find triangle with inserted point p
– Add edges to its vertices

(these new edges are correct) 
– Check correctness of the old edges (triangles) 

“around p” and legalize (flip) potentially illegal edges 

3. Discard the large triangle and incident edges



Input:
Output:
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Incremental algorithm in detail
DelaunayTriangulation(P)

Set P of n points in the plane 
A Delaunay triangulation T of P

1. Let p–2, p–1, p0 form a triangle large enough to contain P
2. Initialize T as the triangulation consisting a single triangle p–2p–1p0
3. Compute random permutation p1, p2 , … , pn of P \ {p0}
4. for r = 1 to n do
5. T = Insert( pr , T )
6. Discard p–1, p–2, p–3 with all incident edges from T
7. return T

[Berg]



Input:
Output:
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Insert( p, T )
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca )
4. LegalizeEdge( p, ab, T)
5. LegalizeEdge( p, bc, T)
6. LegalizeEdge( p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca )
9. LegalizeEdge( p, ab, T)
10. LegalizeEdge( p, bc, T)
11. LegalizeEdge( p, cd, T)
12. LegalizeEdge( p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

cp [Berg]

[Berg]
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Incremental algorithm – edge legalization
LegalizeEdge( p, ab, T )

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if( ab is edge on the exterior face ) return
2. let d be the vertex to the right of edge ab
3. if( inCircle( p, a, d, b ) )   // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge( p, ad, T )
6. LegalizeEdge( p, db, T )

a

b

b

p

d

[Berg]Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d )
After edge flip, the edge pd will be legal 
(the circumcircles of the resulting triangles 
pdb, and pad will bee empty) 
We must check and possibly flip edges ad, db

c
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Correctness of edge flip of illegal edge
 Assume point p is in C (it violates DT criteria for adb)
 adb was a triangle of DT => C was an empty circle
 Create circle C’ trough point p, C’ is inscribed to C, C’ C 

=> C’ is also an empty circle
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p
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DT- point insert and mesh legalization

Every new edge created due to insertion of p will be incident to p

[Berg]
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later



Felkel: Computational geometry

(41 / 61)

Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Correctness of the algorithm

 Every new edge (created due to insertion of p)
– is incident to p
– must be legal

=> no need to test them

 Edge can only become illegal if one of its incident 
triangle changes

– Algorithm tests any edge that may become illegal
=> the algorithm is correct

 Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop
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Point location data structure

 For finding a triangle abc  T containing p
– Leaves for triangles
– Internal nodes for destroyed triangles
– Links to new triangles

 Search p: start in root (initial triangle)
– In each inner node of T:

• Check all children (max three)
• Descend to child containing p
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Point location data structure

Simplified 
- it should contain the root node

[Berg]
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Point location data structure

[Berg]
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Point location data structure

[Berg]

2 nodes (triangles )=> new 2 nodes
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Point location data structure

[Berg]
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InCircle test

 a,b,c are counterclockwise in the plane
 Test, if d lies to the left of the oriented circle 

through a,b,c

c

a

b

d

> 0

[Mount]
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Creation of the initial triangle
 For given points set P
 Initial triangle p–2p–1p0

– Must contain all points of P
– Must not be (none of its points)

in any circle defined 
by non-collinear points of P

 l–2 = horizontal line above P
 l–1 = horizontal line below P
 p–2 = lies on l–2 as far left that p–2 lies outside every circle
 p–1 = lies on l–1 as far right that p–1 lies outside every circle

defined by 3 non-collinear points of P

 Symbolical tests with this triangle => p–1 and p–2 always 
out

[Mount]
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Complexity of incremental DT algorithm

 Delaunay triangulation of a set P in the plane can 
be computed in 

– O(n log n) expected time 
– using O(n) storage

 For details see [Berg, Section 9.4]
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Delaunay triangulations and Convex hulls

 Delaunay triangulation in Rd can be computed 
as part of the convex hull in Rd+1

 2D: Connection is the paraboloid: 22 yxz +=

[Mount]
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Vertical projection of points to paraboloid

 Vertical projection of 2D point to paraboloid in 3D

 Lower convex hull
= portion of CH visible from 

( ) ( )22,,, yxyxyx +→

−∞=z

[Rourke]
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Relation between CH and DT

 Delaunay condition (2D)
Points p,q,r  S form a Delaunay triangle iff the 
circumcircle of p,q,r is empty (contains no point)

 Convex hull condition (3D)
Points p’,q’,r’  S’ form a face of CH(S’) iff the 
plane passing through p’,q’,r’ is supporting S’

– all other points lie to one side of the plane
– plane passing through p’,q’,r’ is supporting hyperplane

of the convex hull CH(S’)
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Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be 
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on 
the lower side of the plane passing through p’, q’, r’.

[Rourke]
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Tangent plane to paraboloid 

 Non-vertical tangent plane through


 Derivation at this point

 Evaluates to      and
 Plane:

[Mount]

 Tangent plane through point 

Paraboloid ଶ+ ଶ

ଶ ଶ ଶ ଶ

ଶ ଶ

ଶ ଶ
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Plane intersecting the paraboloid 

 Non-vertical tangent plane through

 Shift this plane     upwards –> secant plane
intersects the paraboloid in an ellipse in 3D

 Eliminate z (project to 2D)

 This is a circle projected to 2D with center (a, b): 

[Mount]

ଶ
ଶ ଶଶ ଶ

ଶ ଶ + ଶ
ଶ+ ଶ ଶ ଶ + ଶଶ+ ଶ

ଶ + ଶ ଶ



Tangent and secant planes
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ଶݎ
r(ܽ,b)

x, ݕ

z
’ݍ

p

p'

ݍ

Tangent plane

Secant plane

Cross section of the paraboloid

Circle in xy plane
Note: the circle is moved a little down 
– points p and q should lie in the xy plane
– the circle too



Secant plane defined by three points
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[Mount]
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Test inCircle – meaning in 3D

[Mount]

 Points p,q,r are counterclockwise in the plane
 Test, if s lies in the circumcircle of pqr is equal to

= test, weather s’ lies within a lower half space of the 
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)
= test, if s lies to the left of the oriented circle through abc

(2D)



An the Voronoi diagram?

 VD and DT are dual structures
 Points and lines in the plane 

are dual to 
points and planes in 3D space

 VD of points in the plane
can be transformed to 
intersection of halfspaces in 3D space

Felkel: Computational geometry
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Voronoi diagram as upper envelope in Rd+1

 For each point  p = (a, b) a tangent plane to the 
paraboloid is

 H+(p) is the set of points above this plane 

[Mount]

ଶ ଶ + ଶ
 VD of points in the plane can be 

computed as intersection of 
halfspaces H+(pi) 

 This intersection of halfspaces
= unbounded convex polyhedron  
= upper envelope of halfspaces

H+(pi) 

ା ଶ ଶ + ଶ
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Voronoi diagram as upper envelope in 3D

[Fukuda]
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Derivation of projected Voronoi edge

 2 points: and in the plane

 Intersect the planes, project onto xy (eliminate z)

 This line passes through midpoint between p and q

 It is perpendicular bisector with slope
[Mount]

Tangent planes
to paraboloid

ଶ ଶଶ ଶ
ଶ ଶ + ଶ ଶ

௔ା௖ଶ ௕ାௗଶ ଶ ଶ + ଶ ଶ
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