

CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 23.10.2014

Talk overview

- Lower bounds for convex hull in 2D and 3D
- Other criteria for CH algorithm classification
- Recapitulation of CH algorithms
- Terminology refresh
- Convex hull in 3D
- Terminology
- Algorithms
- Gift wrapping
- D\&C Merge
- Randomized Incremental

Lower bounds for Convex hull

- $O(n \log n)$ in E^{2}, E^{3}
- output insensitive
- $\mathrm{O}(n h), \mathrm{O}(n \log h), \quad \mathrm{h}$ is number of CH facets - output sensitive algs.
- O(n) for sorted points and for polygon
- O(log n) for new point insertion in online algs.

Other criteria for CH algorithm classification

- Optimality - depends on data order (or distribution)

In the worst case x In the expected case

- Output sensitivity - depends on the result ~ O(f(h))
- Extendable to higher dimensions?
- Off-line versus on-line
- Off-line - all points available, preprocessing for search speedup
- On-line - stream of points, new point p_{i} on demand, just one new point at a time, CH valid for $\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$
- Real-time - points come as they "want" (not faster than optimal constant $\mathrm{O}(\log n)$ inter-arrival delay)
- Parallelizable x serial
- Dynamic - points can be deleted
- $+=$ Deterministic x approximate (lecture 13)

Graham scan

- $\mathrm{O}(n \log n)$ time and $\mathrm{O}(n)$ space is
- optimal in the worst case
- not optimal in average case
 (not output sensitive)
- only 2D
- off-line
- serial (not parallel)
- not dynamic
$O(n)$ for polygon (will be discussed in seminar [9])

Jarvis March - Gift wrapping

- $O(h n)$ time and $O(n)$ space is
- not optimal in worst case $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- may be optimal if $h \ll n$ (output sensitive)
- 3D or higher dimensions (see later)
- off-line
- serial (not parallel)
- not dynamic

Divide \& Conquer

- $\mathrm{O}(n \log n)$ time and $\mathrm{O}(n)$ space is
- optimal in worst case (in 2D or 3D)
- not optimal in average case (not output sensitive)
- 2D or 3D (circular ordering), in higher dims not optimal
- off-line
- Version with sorting (the presented one) - serial
- Parallel for overlapping merged hulls (see Chapter 3.3.5 in Preparata for details)
- not dynamic

Quick hull

- $\mathrm{O}(n \log n)$ expected time, $\mathrm{O}\left(n^{2}\right)$ the worst case and $O(n)$ space in 2D is
- not optimal in worst case $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- optimal if uniform distribution then $h \ll n$ (output sensitive)
- 2D, or higher dimensions [see http://www.qhull.org/]
- off-line
- serial (not parallel)
- not dynamic

Chan

- $O(n \log h)$ time and $O(n)$ space is
- optimal for h points on convex hull (output sensitive)
- 2D and 3D --- gift wrapping
- off-line
- Serial (not parallel)
- not dynamic

Preparata's on-line algorithm

- New point p is tested
- Inside $\quad \rightarrow$ ignored
- Outside \rightarrow added to hull
- Find left and right supporting lines (touch at supporting points)
- Remove points between supporting points
- Add p to CH between supporting lines

Points of support
$-++4+\quad+$ Felkel: Computational geometry

Overmars and van Leeuven

- Allow dynamic CH (on-line insert \& delete)
- Manage special tree with all intermediate CHs
- Will be discussed on seminar [7]

Convex hull in 3D

- Terminology
- Algorithms

1. Gift wrapping
2. D\&C Merge
3. Randomized Incremental

Terminology

- Polytope (d-polytope)
= convex hull of finite set of points in E^{d}

3-polytop

- Simplex (k-simplex, d-simplex)
$=\mathrm{CH}$ of $k+1$ affine independent points

3-simplex
$=$ "Special" Polytope with all the points are on the CH

Terminology (2)

- Affine combination
= linear combination of the points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ whose coefficients $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ sum to 1 , and $\lambda_{i} \in R$

$$
\sum_{i=1}^{n} \lambda_{i} p_{i}
$$

- Affine independent points
= no one point can be expressed as affine combination of the others
- Convex combination

= linear combination of the points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ whose coefficients $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ sum to 1, and $\lambda_{i}^{+} \in \mathrm{R}^{+}{ }_{0}$ (i.e., $\forall i \in\{1, \ldots, k\}, \lambda_{i} \geq 0$)

DCGI

Terminology (3)

- Any (d-1)-dimensional hyperplane h divides the space into (open) halfspaces h^{+}and h^{-},
so that $E^{n}=h^{+} \cup h \cup h^{-}$
- Def: $\overline{h^{+}}=h^{+} \cup h, \overline{h^{-}}=h^{-} \cup h$ (closed halfspaces)
- Hyperplane supports a polytope P
(Supporting hyperplane)
- if $h \cap P$ is not empty and
- if P is entirely contained within either $\overline{h^{+}}$or $\overline{h^{-}}$

Faces and facets

- Face of the polytope
= Intersection of polytope P with a supporting hyperplane h
- Faces are convex polytops of dimension d ranging from 0 to $d-1$
- 0 -face $=$ vertex
- 1-face = edge
$-(d-1)$-face $=$ facet

In 3D we often say face, but more precisely a facet (In 3D a 2 -face = facet)

Proper faces

- Proper faces
$=$ Faces of dimension d ranging from 0 to $d-1$
- Improper faces
= proper faces + two additional faces:
$-\{ \}=$ Empty set $=$ face of dimension -1
- Entire polytope $=$ face of dimension d

Incident graph

- Stores topology of the polytope
- Ex: 3-simplex:

Dimension

- D-simplex is very regular face structure:
- 1-face for each pair of vertices

Facts about polytopes

- Boundary o polytope is union of its proper faces
- Polytope has finite number of faces (next slide). Each face is a polytope
- Polytope is convex hull of its vertices (the def) (its bounded)
- Polytope is the intersection of finite number of closed halfspaces $\overline{h^{+}}$ (conversely not: intersection of closed halfspaces may be unbounded => called polyhedron or unbounded polytope)

Number of faces on a d-simplex

- Number of j-dimensional faces on a d-simplex
$=$ number of $(j+1)$-element subsets from domain of size (d+1)

$$
\binom{d+1}{j+1}=\frac{(d+1)!}{(j+1)!(d-j)!}
$$

- Ex.: Tetrahedron = 3-simplex:
- facets (2-dim. faces) $\quad\binom{3+1}{2+1}=\frac{4!}{3!!}=4$
- edges (1-dim. faces) $\quad\binom{3+1}{1+1}=\frac{4!}{2!!!}=6$
- vertices (0-dim faces) $\binom{3+1}{0+1}=\frac{4!}{13!}=4$

Complexity of 3D convex hull is $\mathrm{O}(\mathrm{n})$

- The worst case complexity \rightarrow if all n points on CH
=> use simplical 3-polytop for complexity derivation

1. has all points on its surface - on the Convex Hull
2. has usually more edges E and faces F than 3-polytope
3. has triangular facets, each generates 3 edges, shared by 2 triangles $=>3 F=2 E \quad 2$-manifold $V-E+F=2 \quad \ldots$ Euler formula for $V=n$ points
$\mathrm{V}-\mathrm{E}+2 \mathrm{E} / 3=2 \quad \mathrm{~F}=2 \mathrm{E} / 3$
$V-2=E / 3 \quad F=2 V-4$
$\mathrm{E}=3 \mathrm{~V}-6, \quad \mathrm{~V}=\mathrm{n} \ldots \mathrm{F}=\mathrm{O}(\mathrm{n})$

$$
\mathrm{E}=\mathrm{O}(\mathrm{n})
$$

1. Gift wrapping in higher dimensions

- First known algorithm for n-dimensions (1970)
- Direct extension of 2D alg.
- Complexity O(nF)
-F is number of CH facets
- Algorithm is output sensitive
- Details on seminar, assignment [10]

The angle comparison [Preparata 3.4.1]

Cotangent of the agle φ_{k} between halfplanes F and $e p_{k}$

$$
=-\left|U P_{2}\right| / \mid U V, \quad \text { where }\left|U P_{2}\right|=\boldsymbol{v}_{k} \cdot \boldsymbol{a} \text { and }|U V|=\boldsymbol{v}_{k} \cdot \boldsymbol{n}
$$

For each P_{k} compute $\varphi_{k}=\operatorname{arcctan}\left(-\boldsymbol{v}_{k} \cdot \mathbf{a} / \boldsymbol{v}_{k} \cdot \boldsymbol{n}\right)$,
The angle is $\max \varphi_{k}$

2. Divide \& conquer 3D convex hull ${ }_{[\text {Preparata, Hong77] }}$

- Sort points in x-coord
- Recursively split, construct CH, merge
- Merge takes $\mathrm{O}(\mathrm{n})=>\mathrm{O}(n \log n)$ total time

[Rourke]

Divide \& conquer 3D convex hull

- Merge(C_{1} with C_{2}) uses gift wrapping
- Gift wrap plane around edge e - find new point p on C_{1} or on C_{2} (neighbor of a or b)
- Search just the CW or CCW neighbors around a, b

Divide \& conquer 3D convex hull

- Performance $O(n \log n)$ rely on circular ordering
- In 2D: Ordering of points around CH
- In 3D: Ordering of vertices around 2-polytop Co (vertices on intersection of new CH edges with separating plane H_{0}) [ordering around horizon of C_{1} and C_{2} does not exist, both horizons may be non-convex and even not simple polygons]

Divide \& conquer 3D convex hull

Merge(C_{1} with C_{2})

- Find the first CH edge L connecting C_{1} with C_{2}
- $e=L$
- While not back at L do
- store e to C
- Gift wrap plane around edge e - find new point P on C_{1} or on C_{2} (neighbor of a or b)
- $e=$ new edge to just found end-point P
- Store new triangle $e P$ to C
- Discard hidden faces inside CH from C
- Report merged convex hull C

Divide \& conquer 3D convex hull

- Problem of gift wrapping [Edesburner 88]

- The edges on horizon do not form simple circle but a "barbell" 0,2,4,0,1,3,5,1

Do not stop here! ${ }^{\uparrow}$

3. Randomized incremental alg. principle

1. Create tetrahedron (smallest CH in 3D)

- Take 2 points p_{1} and p_{2}
- Search the $3^{\text {rd }}$ point not lying on line $p_{1} p_{2}$
- Search the $4^{\text {th }}$ point not lying in plane $p_{1} p_{2} p_{3}$...if not found, use 2D CH

2. Perform random permutation of remaining points $\left\{p_{5}, \ldots, p_{n}\right\}$
3. For p_{r} in $\left\{p_{5}, \ldots, p_{n}\right\}$ do add point p_{r} to $\mathrm{CH}\left(P_{r-1}\right)$

Notation: for $r \geq 1$ let $P_{r}=\left\{p_{1}, \ldots, p_{r}\right\}$ is set of already processed pts

- If p_{r} lies inside or on the boundary of $\mathrm{CH}\left(P_{r-1}\right)$ then do nothing
- If p_{r} lies outside of $\mathrm{CH}\left(P_{r-1}\right)$ then
- find and remove visible faces
- create new faces (triangles) connecting p_{r} with lines of horizon

$\mathcal{C H}\left(P_{r-1}\right)$
$\frac{C \mathcal{H}\left(P_{r}\right)}{\text { Felkel: Computational geometry }}$

Conflict graph

- Stores unprocessed points with facets of CH they see conflicts
- Bipartite graph points $p_{t}, t>r \ldots$ unprocessed points facets of $\mathrm{CH}\left(P_{r}\right)$... facets of convex hull conflict arcs ... conflict, as visible facets cannot be in CH
- Maintains sets:
$\mathbf{P}_{\text {conflict }}(f)$... points, that see f

$\mathrm{F}_{\text {conflict }}\left(p_{r}\right) \ldots$ facets visible from $p_{r} \ldots P_{\text {conflict }}(f)$
(visible region - deleted after insertion of p_{r})

Conflict graph - init and final state

- Initialization
- Points $\left\{p_{5}, \ldots, p_{n}\right\}$ (not in tetrahedron)
- Facets of the tetrahedron (four)
- Arcs - connect each tetrahedron facet with points visible from it
- Final state
- Points $-\{ \}=$ empty set
- Facets of the convex hull
- Arcs - none

Visibility between point and face

- Face f is visible from a point p if that point lies in the open half-space on the other side of h_{f} than the polytope

f is visible from p (p is above the plane)
f is not visible from r lying in the plane of f (this case will be discussed next)
f is not visible from q
$p \in \mathrm{P}_{\text {conflict }}(f), \quad \mathrm{p}$ is among the points that see the face f
$f \in \mathrm{~F}_{\text {conflict }}(p) \quad f$ is among the faces visible from point p

New triangles to horizon

- Horizon = edges e incident to visible and invisible facets

[Berg]
- New triangle f connects edge e on horizon and point p_{r} and
- creates new node for facet f updates the conflict graph
- add arcs to points visible from f (subset from $\mathrm{P}_{\text {coffict }}\left(f_{1}\right) \cup \mathrm{P}_{\text {coffict }}\left(f_{2}\right)$)
- Coplanar triangles on the plane $e p_{r}$ are merged with new triangle.
Conflicts are copied from the deleted triangle (same plane)
DCGI

Incremental Convex hull algorithm

IncrementalConvexHull(P)

Input: \quad Set of n points in general position in 3D space
Output: The convex hull $\mathrm{C}=\mathrm{CH}(\mathrm{P})$ of P

1. Find four points that form an initial tetrahedron, $\mathrm{C}=\mathrm{CH}\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$
2. Compute random permutation $\left\{p_{5}, p_{6}, \ldots, p_{n}\right\}$ of the remaining points
3. Initialize the conflict graph with all visible pairs $\left(p_{t}, t\right)$, where f is facet of C and $p_{t}, t>4$, are non-processed points
4. for $r=5$ to n do $\quad .$. insert p_{r} into C
5. \quad if $\left(F_{\text {conflict }}\left(p_{r}\right)\right.$ is not empty) then $\ldots p_{r}$ is outside, any facet is visible
6. Delete all facets $F_{\text {conflict }}\left(p_{r}\right)$ from C... only from hull C, not from G Walk around visible region boundary, create list L of horizon edges for all $\mathrm{e} \in L$ do
connect e to p_{r} by a new triangular facet f
if f is coplanar with its neighbor facet f^{\prime} along e then merge f and f^{\prime}, take conflict list from f^{\prime} else ... determine conflicts for new face f_{+}^{+} \ldots... [continue on the next slide]

Incremental Convex hull algorithm (cont...)

 Delete the node corresponding to p_{r} and the nodes corresponding to facets in $F_{\text {coflict }}\left(p_{r}\right)$ from G, together with their incident arcs19. return C

Complexity: Convex hull of a set of points in E^{3} can be computed
in $\mathrm{O}(n \log n)$ randomized expected time
For proof see: [Berg, Section11.3]

Conclusion

- Recapitulation of 2D algorithms
- 3D algorithms
- Gift wrapping
- D\&C
- Randomized incremental

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 11, http://www.cs.uu.nl/geobook/
[Boissonnat] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry, Cambridge University Press, UK, 1998. Chapter 9 - Convex hulls
[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An Introduction. Berlin, Springer-Verlag,1985.
[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lecture 3. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Chan] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., Discrete and Computational Geometry, 16, 1996, 361-368. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10:1.1.44:389

