

OI-OPPA. European Social Fund Prague & EU: We invest in your future.

CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL

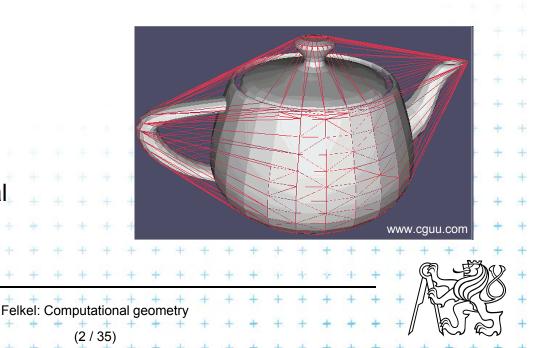
FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 8.11.2012

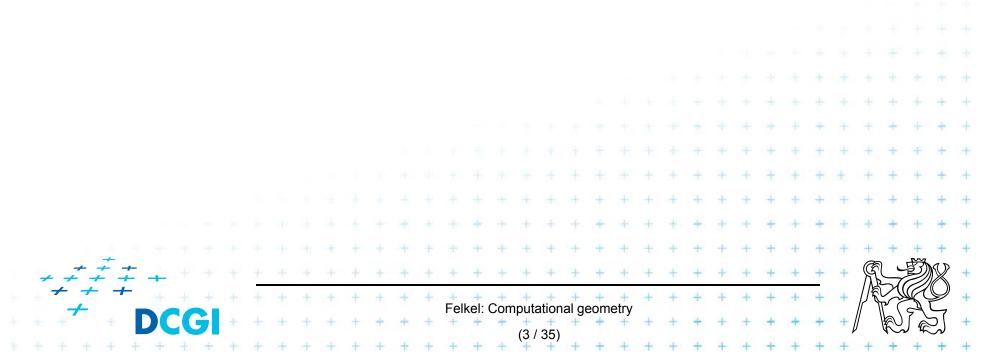
Talk overview

- Lower bounds for convex hull in 2D and 3D
- Other criteria for CH algorithm classification
- Recapitulation of CH algorithms
- Terminology refresh
- Convex hull in 3D
 - Terminology
 - Algorithms
 - Gift wrapping
 - D&C Merge
 - Randomized Incremental



Lower bounds for Convex hull

- $O(n \log n)$ in E^2, E^3
- O(n h), where h is number of CH facets
 output sensitive algs.
- O(n) for sorted points and for polygon
- O(log n) for new point insertion in online algs.



Other criteria for CH algorithm classification

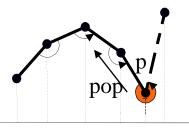
- Optimality depends on data order (or distribution) In worst case x In expected case
- Output sensitivity depends on the result
- Extendable to higher dimensions?
- Off-line versus on-line
 - Off-line all points available, preprocessing for search speedup
 - On-line stream of points, new point p_i on demand, just one new point at a time, CH valid for {p₁, p₂,..., p_r }
 - Real-time points come as they "want"
 (not faster than optimal constant O(log n) inter-arrival delay)

Felkel: Computational geometry

- Parallelizable
- Dynamic points can be deleted

Why to search other convex hull algorithms?

- Graham scan
 O(n log n) time and O(n) space is
 - optimal in worst case

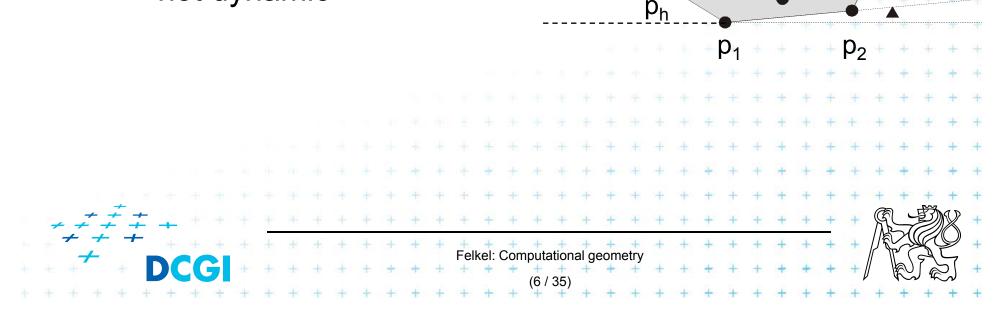


sos tos

- not optimal in average case (not output sensitive)
- only 2D
- off-line
 serial (not parallel)
 not dynamic
 O(n) for polygon (will be discussed in seminar [9])

Jarvis March – Gift wrapping

- O(hn) time and O(n) space is
 - not optimal in worst case $O(n^2)$
 - may be optimal if h << n (output sensitive)</p>
 - 3D or higher dimensions (see later)
 - off-line
 - serial (not parallel)
 - not dynamic



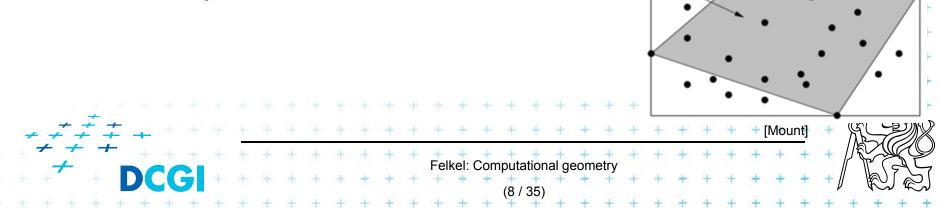
- O(n log n) time and O(n) space is
 - optimal in worst case (in 2D or 3D)
 - not optimal in average case (not output sensitive)
 - 2D or 3D (circular ordering), in higher dims not optimal

Felkel: Computational geometry

- off-line
- Version with sorting (the presented one) serial
- Parallel for overlapping merged hulls (see Chapter 3.3.5 in Preparata for details)
- not dynamic

Quick hull

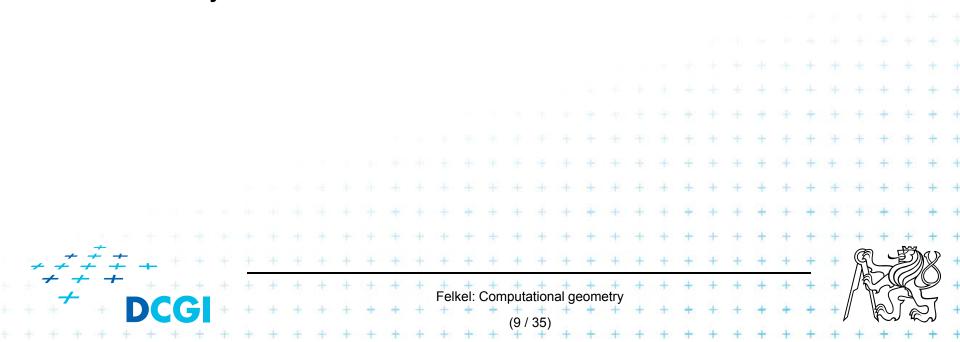
- O(n log n) expected time, O(n²) the worst case and O(n) space in 2D is
 - not optimal in worst case $O(n^2)$
 - optimal if uniform distribution then h << n (output sensitive)
 - 2D, or higher dimensions [see http://www.qhull.org/]
 - off-line
 - serial (not parallel)
 - not dynamic



Chan

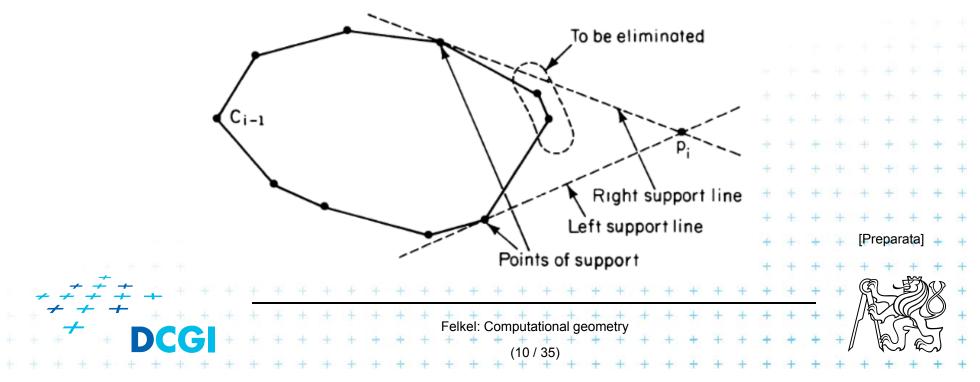
O(n log h) time and O(n) space is

- optimal for *h* points on convex hull (output sensitive)
- 2D and 3D --- gift wrapping
- off-line
- Serial (not parallel)
- not dynamic



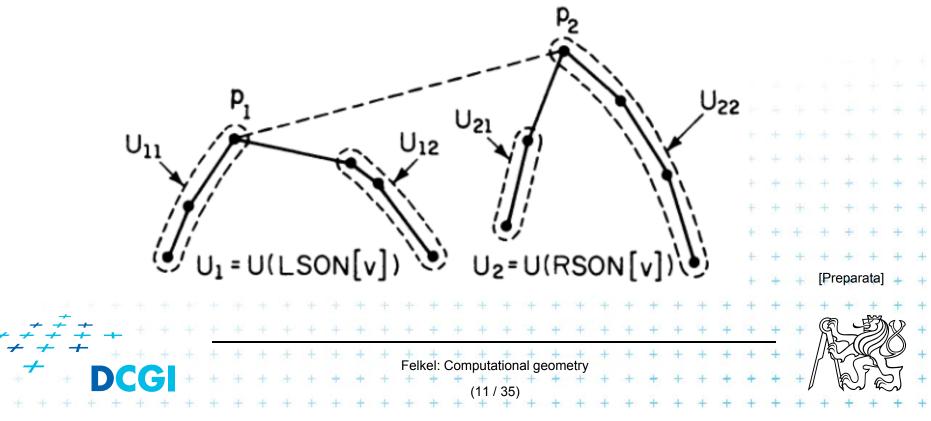
Preparata's on-line algorithm

- New point p is tested
 - Inside –> ignored
 - Outside —> added to hull
 - Find left and right supporting lines (touch at supporting points)
 - Remove points between supporting points
 - Add p to CH between supporting lines



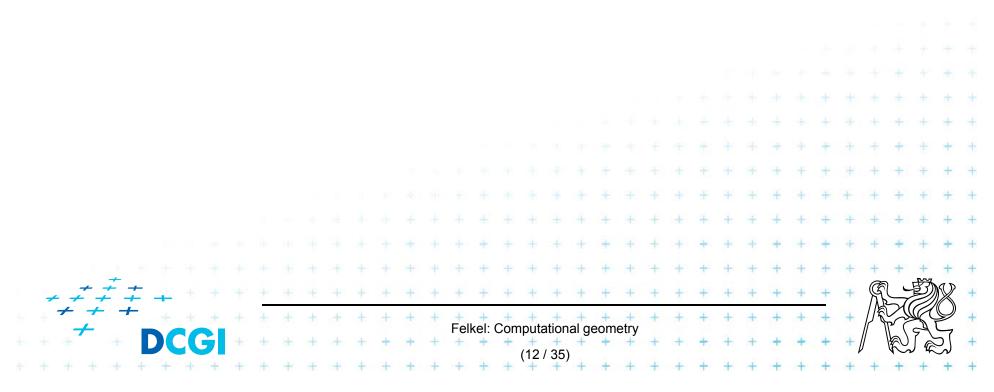
Overmars and van Leeuven

- Allow dynamic CH (on-line insert & delete)
- Manage special tree with all intermediate CHs
- Will be discussed on seminar [7]



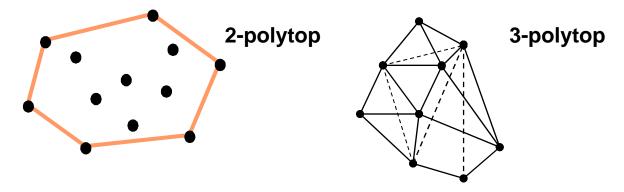
Convex hull in 3D

- Terminology
- Algorithms
 - 1. Gift wrapping
 - 2. D&C Merge
 - 3. Randomized Incremental



Terminology

Polytope (d-polytope)
 = convex hull of finite set of points in E^d



= "Special" Polytope with all the points are on the CH

Felkel: Computational geometry

Terminology (2)

- Affine combination
 - = linear combination of the points $\{p_1, p_2, ..., p_n\}$ whose coefficients { λ_1 , λ_2 , ..., λ_n } sum to 1, and $\lambda_i \in R$

$$\sum_{i=1}^{n} \lambda_{i} p_{i}$$

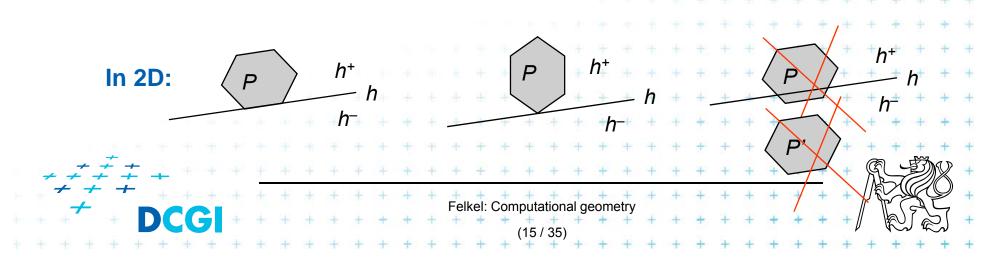
- Affine independent points
 - = no one point can be expressed as affine combination of the others $p_2 \bullet p_1$
- Convex combination

= linear combination of the points $\{p_1, p_2, ..., p_n\}$ whose coefficients $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ sum to 1, and $\lambda_i \in \mathbb{R}^+_0$ (i.e., $\forall i \in \{1, ..., k\}, \lambda_i \ge 0$)

Felkel: Computational geometry

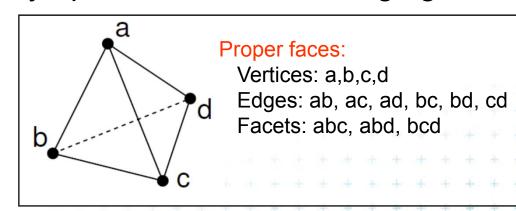
Terminology (3)

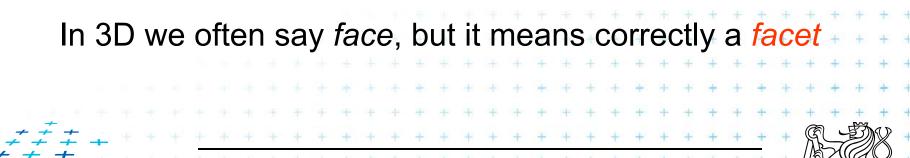
- Any (d-1)-dimensional hyperplane *h* divides the space into (open) halfspaces *h*⁺ and *h*⁻, so that Eⁿ = h⁺ ∪ h ∪ h⁻
- Def: $\overline{h^+} = h^+ \cup h$, $\overline{h^-} = h^- \cup h$ (closed halfspaces)
- Hyperplane supports a polytope P (Supporting hyperplane)
 - if $h \cap P$ is not empty and
 - if *P* is entirely contained within either $\overline{h^+}$ or $\overline{h^-}$



Faces and facets

- Face of the polytope
 - = Intersection of polytope *P* with a supporting hyperplane *h*
 - Faces are convex polytops of dimension *d* ranging from 0 to d 1
 - 0-face = vertex
 - 1-face = edge
 - (d 1)-face = facet

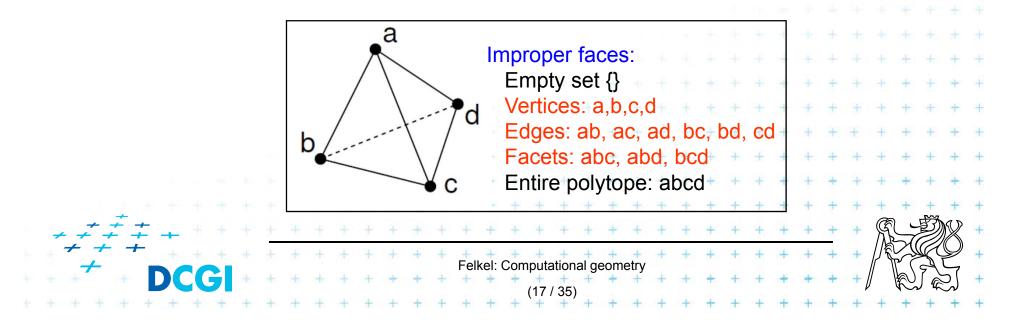




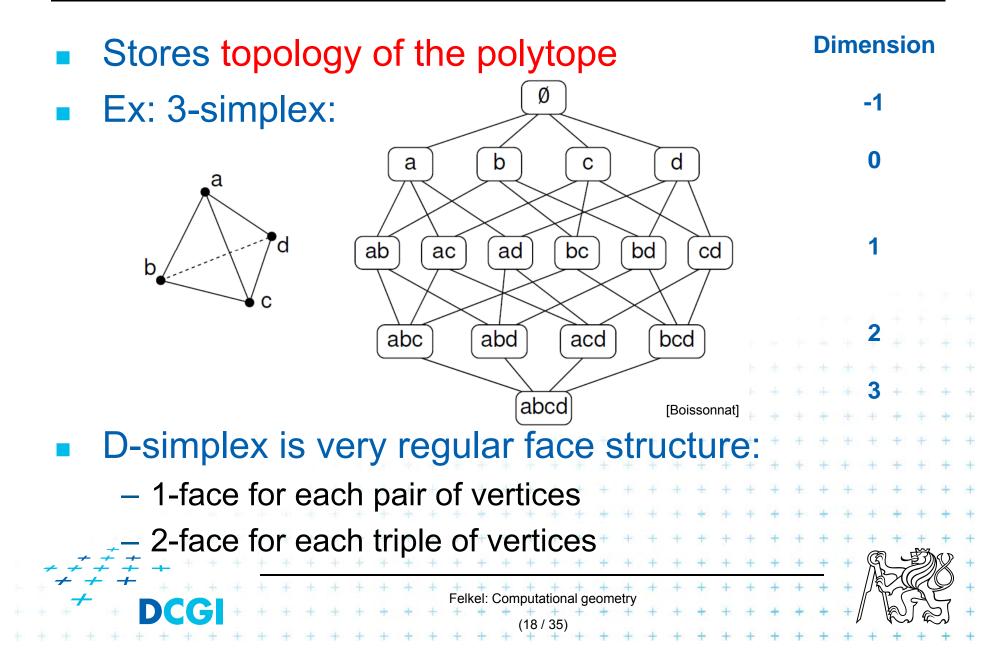
Felkel: Computational geometry

Proper faces

- Proper faces
 - = Faces of dimension *d* ranging from 0 to d 1
- Improper faces
 - = proper faces + two additional faces:
 - {} = Empty set = face of dimension -1
 - Entire polytope = face of dimension d

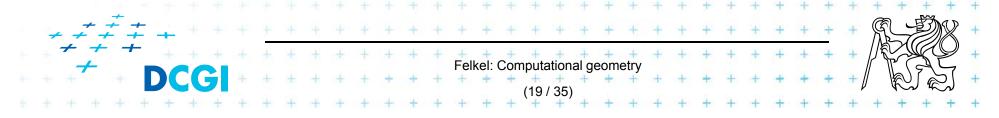


Incident graph



Facts about polytopes

- Boundary o polytope is *union of its proper faces*
- Polytope has *finite number of faces (next slide)*.
 Each face is a polytope
- Polytope is convex hull of its vertices (the def) (its bounded)
- Polytope is the intersection of finite number of closed halfspaces h⁺
 (conversely not: intersection of closed halfspaces may be unbounded => called polyhedron or unbounded polytope)



Number of faces on a d-simplex

Number of *j*-dimensional faces on a *d*-simplex
 number of (*j*+1)-element subsets from domain of size (*d*+1)

$$\binom{d+1}{j+1} = \frac{(d+1)!}{(j+1)!(d-j)!}$$

• Ex.: Tetrahedron = 3-simplex:

- facets (2-dim. faces)
$$\begin{pmatrix} 3+1\\2+1 \end{pmatrix} = \frac{4!}{3!!!} = 4$$

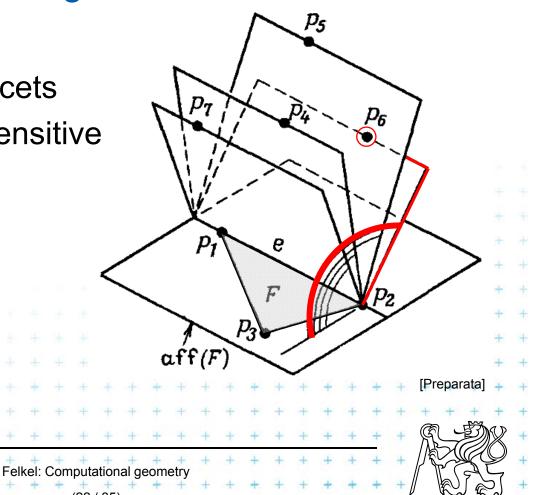
- edges (1-dim. faces) $\begin{pmatrix} 3+1\\1+1 \end{pmatrix} = \frac{4!}{2!2!} = 6$
- vertices (0-dim faces) $\begin{pmatrix} 3+1\\0+1 \end{pmatrix} = \frac{4!}{1!3!} = 4$
Felkel: Computational geometry

Complexity of 3D convex hull is O(n)

- The worst case complexity \rightarrow if all *n* points on CH
- => use 3-simplex for complexity derivation
 - 1. has all points on its surface on the Convex Hull
 - 2. has usually more edges E and faces F than 3-polytope
 - 3. has triangular facets, each generates 3 edges, shared by 2 triangles => 3F = 2E 2-manifold
- V E + F = 2 ... Euler formula for V = n points V - E + 2E/3 = 2 F = 2E/3 V - 2 = E/3 F = 2V - 4 E = 3V - 6, V = n F = O(n) E = O(n)Felkel: Computational geometry (21/35)

1. Gift wrapping in higher dimensions

- First known algorithm for n-dimensions (1970)
- Direct extension of 2D alg.
- Complexity O(nF)
 - F is number of CH facets
 - Algorithm is output sensitive
 - Details on seminar, assignment [10]



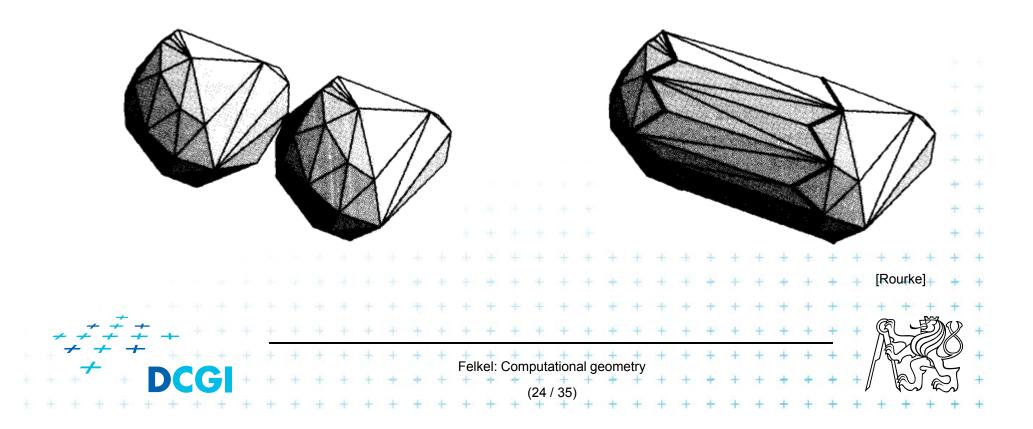
The angle comparison [Preparata 3.4.1]

Cotangent of the agle φ_k between halfplanes *F* and $ep_k = -|UP_2| / |UV|$, where $|UP_2| = v_k \cdot a$ and $|UV| = v_k \cdot n$



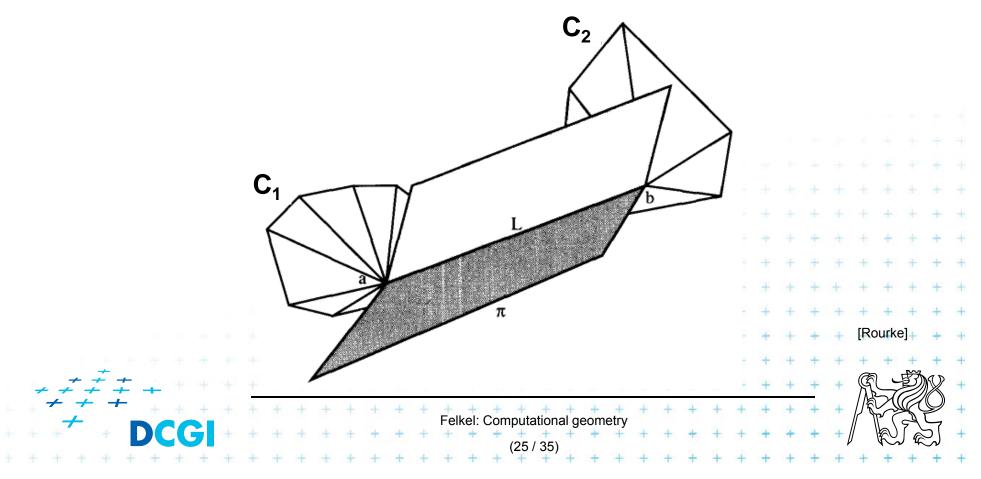
2. Divide & conquer 3D convex hull [Preparata, Hong77]

- Sort points in x-coord
- Recursively split, construct CH, merge
- Merge takes O(n) => O(n log n) total time



Divide & conquer 3D convex hull [Preparata, Hong 77]

- Merge(C₁ with C₂) uses gift wrapping
 - Gift wrap plane around edge e find new point p on C₁ or on C₂ (neighbor of a or b)
 - Search just the CW or CCW neighbors around *a*, *b*



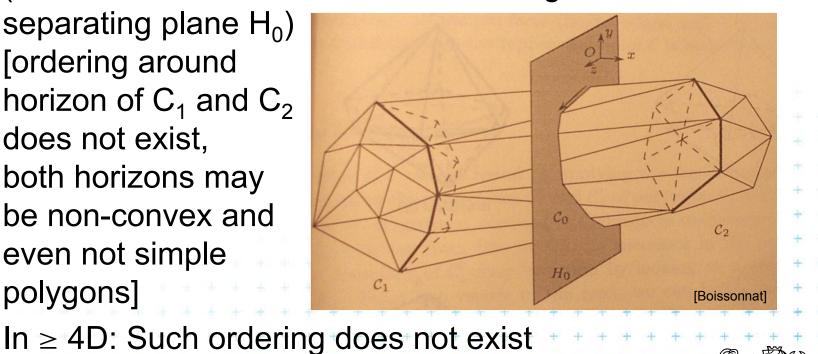
Divide & conquer 3D convex hull [Preparata, Hong 77]

Performance O(n log n) rely on circular ordering

- In 2D: Ordering of points around CH
- In 3D: Ordering of vertices around 2-polytop C_0 (vertices on intersection of new CH edges with

Felkel: Computational geometry

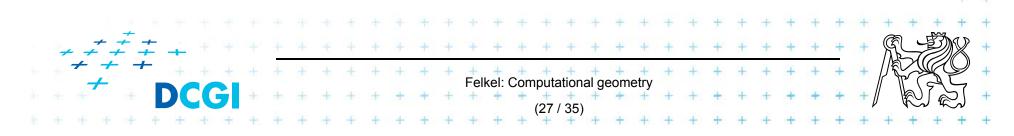
separating plane H_0) [ordering around horizon of C_1 and C_2 does not exist, both horizons may be non-convex and even not simple polygons]



Divide & conquer 3D convex hull [Preparata, Hong 77]

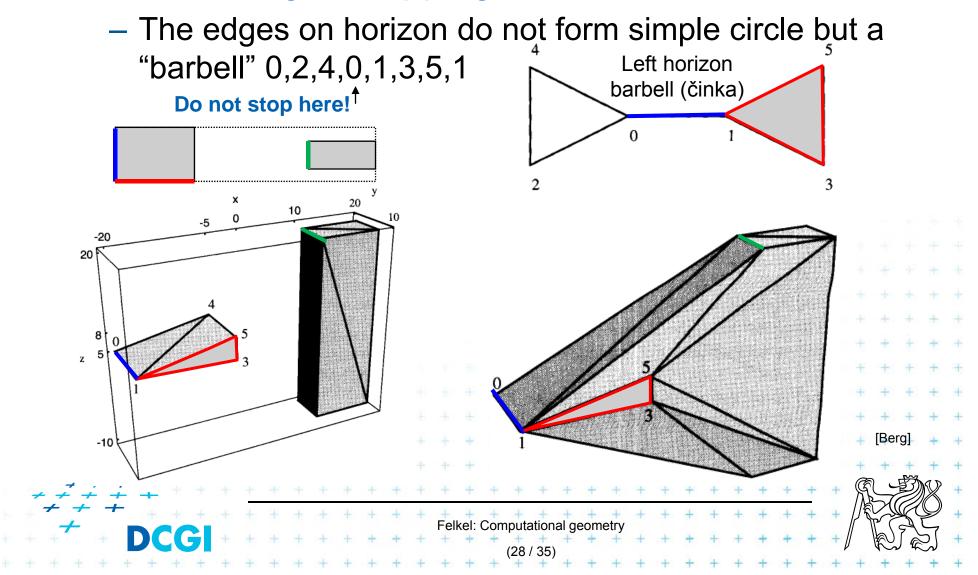
$Merge(C_1 with C_2)$

- Find the first CH edge L connecting C₁ with C₂
- e = L
- While not back at *L* do
 - store e to C
 - Gift wrap plane around edge e find new point P on C₁ or on C₂ (neighbor of a or b)
 - e = new edge to just found end-point P
 - Store new triangle eP to C
- Discard hidden faces inside CH from C
- Report merged convex hull C



Divide & conquer 3D convex hull [Preparata, Hong 77]

• Problem of gift wrapping [Edelsbrunner 88]



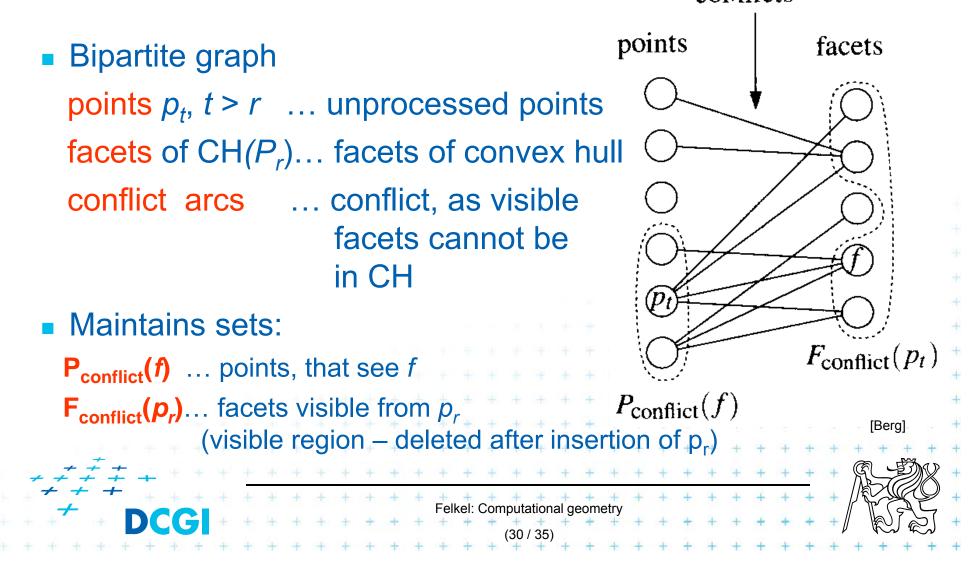
3. Randomized incremental alg. principle

- 1. Create tetrahedron (smallest CH in 3D)
 - Take 2 points p_1 and p_2
 - Search the 3rd point not lying on line p_1p_2
 - Search the 4th point not lying in plane $p_1p_2p_3$...if not found, use 2D CH
- 2. Perform random permutation of remaining points $\{p_5, ..., p_n\}$
- 3. For p_r in $\{p_5, ..., p_n\}$ do add point p_r to $CH(P_{r-1})$ Notation: for $r \ge 1$ let $P_r = \{p_1, ..., p_r\}$ is set of already processed pts
 - If p_r lies inside or on the boundary of CH(P_{r-1}) then do nothing
 - If p_r lies outside of CH(P_{r-1}) then
 - find and remove visible faces
 - create new faces (triangles) connecting p_r with lines of horizon



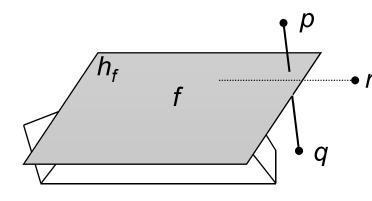
Conflict graph

Stores unprocessed points with facets of CH they see conflicts



Visibility between point and face

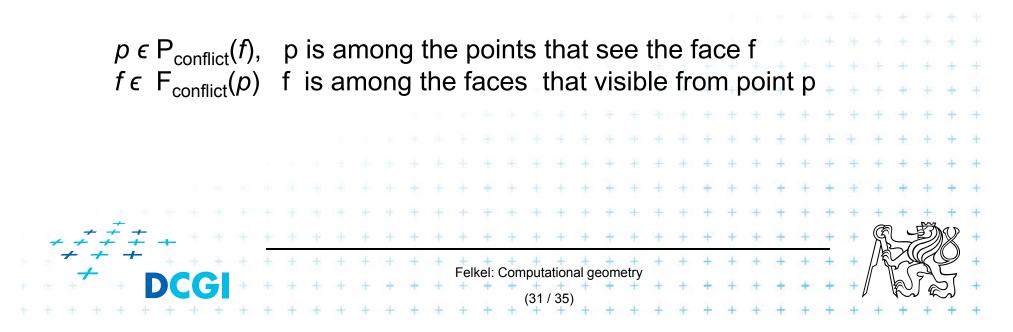
 Face f is visible from a point p if that point lies in the open half-space on the other side of h_f than the polytope



f is visible from p (p is above the plane)

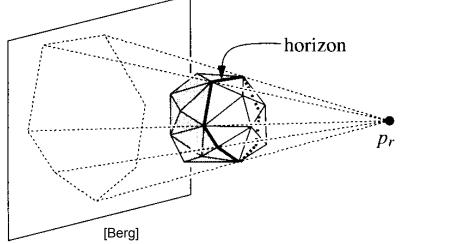
f is **not visible** from *r* lying *in the plane* of *f* (this case will be discussed next)

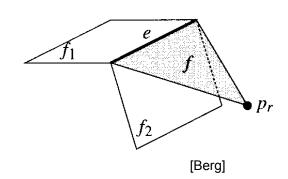
f is not visible from q



New triangles to horizon

Horizon = edges e incident to visible and invisible facets





- New triangle f connects edge e on horizon and point p_r and
 - creates new node for facet f
- updates the conflict graph
- add arcs to points visible f (subset from $P_{coflict}(f_1) \cup P_{coflict}(f_2)$)
- Coplanar triangles on the plane ep_r are merged with new triangle.

Conflicts are copied from the deleted triangle (same plane)

Felkel: Computational geometry

Incremental Convex hull algorithm

IncrementalConvexHull(P)

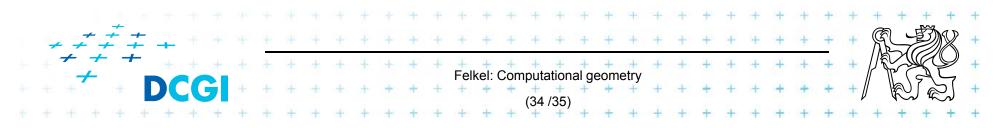
Set of *n* points in general position in 3D space Input: *Output:* The convex hull C=CH(P) of P Find four points that form an initial tetrahedron, $C = CH(\{p_1, p_2, p_3, p_4\})$ 2. Compute random permutation $\{p_5, p_6, \dots, p_n\}$ of the remaining points Initialize the conflict graph with all visible pairs (p_t, f) , 3. where f is facet of C and p_t , t > 4, are non-processed points **4.** for *r* = 5 to *n* do ...insert p_r , into C 5. if $(F_{conflict}(p_r)$ is not empty) then ... p_r is outside, any facet is visible Delete all facets $F_{conflict}(p_r)$ from C ... only from hull C, not from G 6. 7. Walk around visible region boundary, create list *L* of horizon edges 8. for all $e \in L$ do 9. connect e to p_r by a new triangular facet f if f is coplanar with its neighbor facet f' along e 10. **then** merge f and f', take conflict list from f' 11. else ... determine conflicts for new face f 12 ... [continue on the next slide] Felkel: Computational geometry

Incremental Convex hull algorithm (cont...)

12.else ... not coplanar => determine conflicts for new face f13.Create node for f in G14.Let f_1 and f_2 be the facets incident to e in the old $CH(P_{r-1})$ 15.P(e) = $P_{coflict}(f_1) \cup P_{coflict}(f_2)$ 16.for all points $p \in P(e)$ do17.if f is visible from p, then add(p, f) to G18.Delete the node corresponding to p_r and the nodes corresponding to facets in $F_{coflict}(p_r)$ from G, together with their incident arcs19. return C

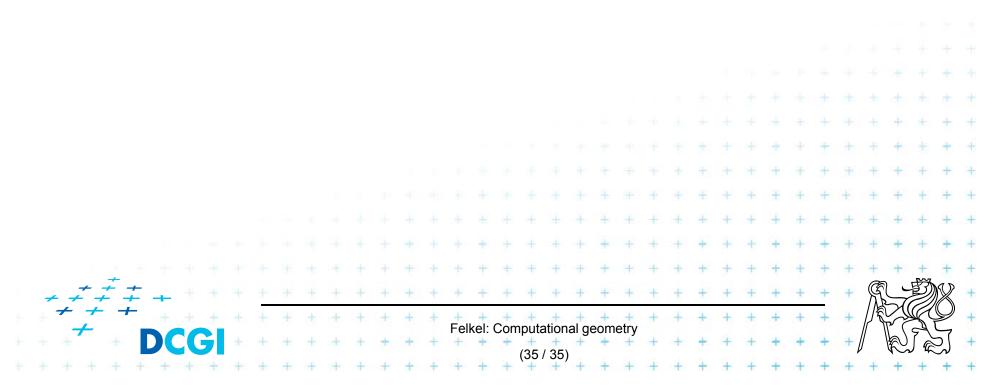
Complexity: Convex hull of a set of points in E^3 can be computed in $O(n \log n)$ randomized expected time

For proof see: [Berg, Section11.3]



Conclusion

- Recapitulation of 2D algorithms
- 3D algorithms
 - Gift wrapping
 - D&C
 - Randomized incremental



References

[Berg]	<u>Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:</u> Computational Geometry: <i>Algorithms and Applications</i> , Springer- Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540- 77973-5, Chapter 11, <u>http://www.cs.uu.nl/geobook/</u>
[Boissonr	nat] JD. Boissonnat and M. Yvinec, <i>Algorithmic Geometry</i> , Cambridge University Press, UK, 1998. Chapter 9 – Convex hulls
[Preparata	a] Preperata, F.P., Shamos, M.I.: <i>Computational Geometry. An</i> Introduction. Berlin, Springer-Verlag,1985.
[Mount]	David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lecture 3. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
[Chan]	Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions., <i>Discrete and Computational Geometry</i> , 16, 1996, 361-368. <u>http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389</u> +++
<i>+ ≠ ≠ ∓ +</i> <i>+</i> D	CGI Felkel: Computational geometry (36 / 35)

OI-OPPA. European Social Fund Prague & EU: We invest in your future.