PRA|HA
OPP PRA|GUE

PRA|GA

A PRA|G

* X
* *
* *
* *

* 4 *

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.

State-space and Plan-space Planning Algorithms

based on Dana S. Nau, University of Maryland,
revised and presented by Michal Pechoucek, CTU in Prague

— Nearly all planning procedures are search procedures
— Different planning procedures have different search spaces
» Two examples:
— State-space planning
» Each node represents a state of the world
* Aplanis a path through the space
— Plan-space planning
» Each node is a set of partially-instantiated operators, plus some constraints
* Impose more and more constraints, until we get a plan

— State-space planning
» Forward search
» Backward search
» Lifting
» STRIPS
» Block-stacking

Forward Search

locl loc2

cranel
7
e
e take c2
locl loc2
move rl

Forward Search

Forward-search(O, sg, g)

§ «— Sq

m «— the empty plan

loop
if s satisfies g then return
E — {ala is a ground instance an operator in O,

and precond(a) is true in s}

if £ = () then return failure
nondeterministically choose an action a € £
s — (s, a)
T 7.0

Forward Search

—[<]
8] [A]

[e][=][>]

Forward Search

Forward Search

N
(S
-
1)
()
(Vs
©
-
3
—
o
Ll

cC

ot ty

b ._.-‘p\"’
’

1A

R 3
’ql_,' ""*‘--‘,

o2 ’/i

.
e

o — B LJ A C

=
g
et

Forward Search

10

— Forward-search is sound

» for any plan returned by any of its nondeterministic traces, this plan is
guaranteed to be a solution

— Forward-search also is complete

» if a solution exists then at least one of Forward-search’s nondeterministic
traces will return a solution.

11

Deterministic Implementations

— Some deterministic implementations

of forward search: a S,
» breadth-first search
- So S, <— - * Sy
» depth-first search 2 ” Sq -
5

» best-first search (e.g., A*)
» greedy search
— Breadth-first and best-first search are sound and complete
» But they usually aren’t practical because they require too much memory
» Memory requirement is exponential in the length of the solution
— In practice, more likely to use depth-first search or greedy search
» Worst-case memory requirement is linear in the length of the solution
» In general, sound but not complete
* But classical planning has only finitely many states
* Thus, can make depth-first search complete by doing loop-checking

12

Branching Factor of Forward Search

initial state goal

— Forward search can have a very large branching factor

» E.g., many applicable actions that don’t progress toward goal
— Why this is bad:

» Deterministic implementations can waste time trying lots of irrelevant actions
— Need a good heuristic function and/or pruning procedure

» See Section 4.5 (Domain-Specific State-Space Planning)
and Part Il (Heuristics and Control Strategies)

13

Backward Search

— For forward search, we started at the initial state and computed state transitions
» new state =v(s,a)
— For backward search, we start at the goal and compute inverse state transitions
» new set of subgoals =y7%(g,0a)
— To define y1(g,a), must first define relevance:
» An action g is relevant for a goal g if
* a makes at least one of g’s literals true
— g N effects(a) #
* g does not make any of g’s literals false
— g* N effects™(a) = D and g~ N effects*(a) = &

14

Inverse State Transitions

— If aisrelevant for g, then
» vyg,a) = (g — effects(a)) U precond(a)
— Otherwise y71(g,a) is undefined

— Example: suppose that
» g={on(bl,b2), on(b2,b3)}
» a=stack(bl,b2)

— Whatisy*(g,a)?

15

Backward Search

Backward-search(O, sy, g)

7 «— the empty plan

loop
if so satisfies g then return
A < {ala is a ground instance of an operator in O

and 7 1(g,a) is defined}

if A= () then return failure
nondeterministically choose an action a € A
T a.T

g —~"'(g,a)

16

Efficiency of Backward Search

B 5

al a2 a3 = a50

initial state goal

— Backward search can also have a very large branching factor

» E.g., an operator o that is relevant for g may have many ground instances a,,
a,, ..., d, such that each a/s input state might be unreachable from the initial

state
— As before, deterministic implementations can waste lots of time trying all of
them

— Backward-search is sound and complete

17

Pruning the Search Space

» Lifting
» STRIPS
» Block stacking

18

Lifted Backward Search

— We can reduce the branching factor if we partially instantiate the operators

» this is called lifting
— More complicated than Backward-search (keeps track of what substitutions
were performed), but it has a much smaller branching factor

Lifted-backward-search(O, sp, g)
m «— the empty plan

loop
if sy satisfies g then return 7
A« {(0.0)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects ™ (o),

and v 1(0(g),0(0)) is defined}
if A =0 then return failure

nondeterministically choose a pair (0,0) € A
7 « the concatenation of #(0) and #(x)

g9 —v7'(6(g),0(0))

19

STRIPS Planner

— 1< the empty plan
— do a modified backward search from g
» instead of y'(s,a), each new set of subgoals is just precond(a)
» choose one of them to achieve
» Ifitis not already achieved
e choose an action that makes the goal true
* achieve the preconditions of the action
e carry out the action
» achieve the rest of the goals.

— The STRIPS algorithm, as presented, is unsound.
— Achieving one subgoal may undo already achieved subgoals.

20

Example — Sussman Anomaly

START E ﬂ

On(C,A) On(A.Table} Ci(B) On(B. Table) C/(C)

On(A.B) On(B.C}

FINISH

21

Example — Sussman Anomaly

START E u

On(C,A) On{A.Tabie} Cl{B} On(B, Table) Ci(C}

c;?s) on(B.z) Cl{C)
PutOn(B,C)

/

#
On(A.B) On(B.C)

FINISH

Io|m|>

22

Example — Sussman Anomaly

C
START B E

On(C.A) On(A.Table) Cl(B} On(B. Table) CI(C)

PutOn{A.B})

clobbers CI(B)

=> order after
PutOn(B.C)

C/?B) O’v(B.z) 3}(0)
- Puton(B.C)

1
Ci(A) On(A.z) CI(B)

/"

PutOn(A,B) ==

\

On?A.B) on(B.c

FINISH

Iolml)

23

Example — Sussman Anomaly

START
On(C A) On{A . Table) C/{B} On(B.Tabie) C/(C)

/4//

/ 4 \
on(C.z} CHC)
PutOnTable(C) .

SN

-~
\\
-~

'“\\ CI?B) On?B,z) CIPC)

3
CitA) On(A.z) Ci(B) N~
(A) Ont (_ = Puton(,C)

PUtON(A,B) == /

b} #
on(A.B) On(B.C)

FINISH

BI{A

PutOn{A.B)

clobbers CI(B)

=> order after
PutOn(B,C)

PutOn(B,C)
clobbers CI(C)
=> order after

PutOnTable(C)

o] =]>

24

How to Handle Problems like These?

— How to make STRIPS sound?

» Protect subgoals so that, once achieved, until they are needed, they cannot
be undone.

* Protecting subgoals makes STRIPS incomplete.
» Reachieve subgoals that have been undone.
* Reachieving subgoals finds longer plans than necessary.
» Use domain-specific knowledge to prune the search space
e Can solve both problems quite easily this way
* Example: block stacking using forward search
» Use methods for causal links thread resolution

25

Additional Domain-Specific Knowledge

— Ablock x needs to be moved if any of the following is true:
» s contains ontable(x) and g contains on(x,y) - see a below
» s contains on(x,y) and g contains ontable(x) - see d below
» s contains on(x,y) and g contains on(x,z) for some y#z
* see C below
» s contains on(x,y) and y needs to be moved - see e below

[a
d b
C » c
al |b d
| R —
Initial state goal

26

Domain-Specific Block Stacking Algorithm

loop
if there is a clear block x such that
X needs to be moved and
x can be moved to a place where it won’t need to be moved
then move x to that place
else if there is a clear block x such that
X needs to be moved
then move x to the table
else if the goal is satisfied
then return the plan
else return failure

t
repea |——| a
d b
el |c » c
al |b d
T I ——
Initial state goal

27

Easily Solves the Sussman Anomaly

loop
if there is a clear block x such that
X needs to be moved and
x can be moved to a place where it won’t need to be moved
then move x to that place
else if there is a clear block x such that
X needs to be moved
then move x to the table
else if the goal is satisfied
then return the plan
else return failure

repeat]
a
» b
al b
|
Initial state goal

28

— The block-stacking algorithm:
» Sound, complete, guaranteed to terminate

» Runsin time O(n3)
e Can be modified to runin time O(n)

» Often finds optimal (shortest) solutions
» But sometimes only near-optimal (Exercise 4.22 in the book)
» Recall that PLAN LENGTH for the blocks world is NP-complete

29

Plan Space Planning (PSP)

— Backward search from the goal

— Each node of the search space is a partial plan
* A set of partially-instantiated actions
* A set of constraints bar(y)

» Make more and more refinements, Precond: —pq(y)
until we have a solution Effects: ...
foo(x)

— Types of constraints: Precond: ..

» precedence constraint: Effects: pa(x
a must precede b Pat)

» binding constraints:
* inequality constraints, e.g., v, Zv,0orv#c
* equality constraints (e.g., v; = v, or v = ¢) or substitutions
» causal link:
* use action a to establish the precondition p needed by action b
— How to tell we have a solution: no more flaws in the plan
» Will discuss flaws and how to resolve them

baz(x)
Precond: pq(x)
Effects: ...

30

Flaws: 1. Open Goals

— Open goal:

» An action a has a precondition p that we haven’t

decided how to establish

Resolving the flaw:
» Find an actionb

— (either already in the plan, or insert it)

foo(x)
Precond: ...
Effects: pq(x)

» that can be used to establish p

— can precede a and produce p

» Instantiate variables
» Create a causal link

foo(x)
Precond: ...
Effects: pg(x)

pa(x)

-7 pax)

baz(x)
Precond: pq(x)
Effects: ...

baz(x)
Precond: pq(x)
Effects: ...

31

Flaws: 2. Causal Link Threats

— Causal Link Formally: due to the properties of the ordering relation:
Yoy, a0 € dr i x € pre(ag) Ax € eff(aq) & a; < ay
we introduce causal link as satisfiability relation among operators
aq = g, where & € eff(aq) N = € pre(as) N a; < as

to be read as 1 achieves x for 2 the fact x is that true allows carrying out 2
provided that 1 has been already achieved

— Causal link threat:

negative thread of causal link: a1 < 2.9 < g and «; 5 zare consistent
in a plan and there is an effect ¢ € (eff as) sothat —q € (pre a3)

positive causal thread is defined similarly

— Causal link threat resolution:
additional ordering — demotion 3 < &2 or promotion 2 < (1 or constrain
variable binding preventing the threat

32

The PSP Procedure

PSP(x)
flaws «— OpenGoals(w) | Threats(x)
if flaws = { then return(r)
select any flaw ¢ € flows
resolvers «+— Resolve(d,)
if resolvers = () then return(failure)
nondeterministically choose a resolver p © resolvers
7’ «— Refine(p, 7)
return{PSP(="))
end

— PSP is both sound and complete

33

— Similar (but not identical) to an example in Russell and Norvig’s Artificial
Intelligence: A Modern Approach (1st edition)

— Operators:
» Start
Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk),
Sells(SM,Banana)

» Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)
» Go(l,m)

Precond: At(l)

Effects: At(m), —At(l)
» Buy(p,s)

Precond: At(s), Sells(s,p)

Effects: Have(p)

34

Example (continued)

— Initial plan

At(Home), Sells(HWS,Dirill), Sells(SM,Milk), Sells(SM,Bananas)

Have(Drill) Have(MiIk)" Have(Bananas) At(Home)

35

Example (continued)

— The only possible ways to establish the Have preconditions

Sells(sy, Drill) At(sy) | Sells(sy,Milk) At(s;) | Sells(s;,Bananas)

-
—— = —
-
-

36

Example (continued)

— The only possible ways to establish the Sells preconditions

37

Example (continued)

— The only ways to establish At(HWS) and At(SM)
» Note the threats

At(l,)

GO(IlsHWS) T L

Laanl T
.

.
.
"""
.
.
A

PRy
e
.
.
.
.
.
.
.
o
e
-

_—”
-——
-

A | v
Nave(Drill) Have(Milk)[Have(Bananas)

38

Example (continued)

— To resolve the threat to At(s,), make Buy(Drill) precede Go(SM)
» This resolves all three threats

At(l,) : Go(l,, SM)

Go(l;,HWS)

-

At(HWS) | Sells(HWS,Drill)| At(SM) | Sells(SM,Milk) At(SM)|Sells(SM,Bananas)

_—”
-——
——

39

Example (continued)

— Establish At(/,) with /;I=Home

-

-
-
-

At(HWS) | Sells(HWS,Drill)| At(SM) | Sells(SM,Milk) At(SM)|Sells(SM,Bananas)

_—’/
——
-

40

Example (continued)

— Establish At(/,) with [,= HWS

_______________ ~ ~XZ=s__---------+ A{(HWS)
Go(HWS, SM)

-
-
p—_—

-——
-

—
———
-

At(HWS) | Sells(HWS,Drill)/ At(SM) | Sells(SM,Milk) At(SM)|Sells(SM,Bananas)

_—’/
——
-

41

Example (continued)

— Establish At(Home) for Finish
» This creates a bunch of threats

________________ — <o~ o-----===> AHWS)

- oy

_—”
-——
——

.
)
.
o
o

Go(HWS, SM)

-

Go(l;, Home)

42

Example (continued)

— Constrain Go(/;,Home) to remove threats to At(SM)
» This also removes the other threats

---------------- > A(HWS)

——
——— -
- -—
- - ~
-

» Vs

At(Home) / L ~~—— Go(HWS, SM)

Go(Home,HWS)

\

N
AY

\

At(HWS) [Sells(H

WS, Drill)/ At(SM) | Sells(SM,Milk) At(SM)|Sells(SM,Bananas)

Go(l;, Home)

A | \4
Nave(Drill) Have(Milk)| Have(Bananas) ~At(Home)

43

— Establish At(/;) with ,b=SM

---------------- > At(HWS)

————
————
- —
——— — -~
-

» Vs

At(Home) / L ~~— Go(HWS, SM)

Go(Home,HWS)

\

N
AY

\

At(HWS) [Sells(H

WS, Drill)/ At(SM) | Sells(SM,Milk) At(SM)|Sells(SM,Bananas)

A\ 4

Go(SM, Home)

A | \4
Nave(Drill) Have(Milk)| Have(Bananas) ~At(Home)

44

Comments

— PSP doesn’t commit to orderings and instantiations until necessary
— Problem: how to prune infinitely long paths?
» Loop detection is based on recognizing states we’ve seen before
» In a partially ordered plan, we don’t know the states

— Can we prune if we see the same action more than once?
... — go(b,a) — go(a,b) — go(b,a) — at(a)

— No. Sometimes we might need the same action several times in different states of
the world.

45

TOPLAN - known nonlinear planner

initialize: IT — {{sgoa1}}. S “— {Sgoar}

toplan(sp, II, 5):

if ds, € S, m, € Il : sgoa1 = 5, then return(m,)
if S={} return failure
else remove s; from S and remove 7; from I1
A — {a‘eﬁ(a}Esi}
S — {5|vacA: successor(a.s)=s, |
[T — {7|vaca: r=aum, }

return(toplan(sg, append (IL,I1) ,append (S, S)))

46

POPLAN - known nonlinear planner

initialize: Il « {actions,{s) < sgoa1},{}, {Pre(sgea1)}}

poplan(Il):

if complete(Il) then return(Il)

if Jp of action 3 € open goals(Il) and Jo that achieves p
than append(Il, {{«a 7 B}, {a < B}}) and remove (3, open_goals(I1))
else return(fail)

1f there 1s a causal link «a; 3 a9 threatened by a3

then do either

Promotion: return poplan(IlW {ag < ai}) or

Demotion: return poplan(Il W {as < ag}) or

else return poplan(Il)

47

PRA|HA
OPP PRA|GUE

PRA|GA

A PRA|G

* X
* *
* *
* *

* 4 *

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.

