PLAN-SPACE PLANNING
PAH CV5

Total-order planning

The state-space planning technique produces totally-
ordered plans, i.e. plans which consist of a strict
sequence of actions.

Often, however, there are many possible orderings of
actions than have equivalent effects.

Example
—

11 Consider the planning problem:

A"

INITIAL \\"\

s

GOAL

Example

here are many possible plans:

move(blue, red, table)
move(red, table, blue)
move(green, yellow, table)

move(yellow, table, green)

move(green, yellow, table)
move(yellow, table, green)
move(blue, red, table)

move(red, table, blue)

move(blue, red, table)
move(green, yellow, table)
move(red, table, blue)

move(yellow, table, green)

move(green, yellow, table)
move(blue, red, table)
move(red, table, blue)

move(yellow, table, green)

Example

These plans share some common structure. In fact, they
are all different interleavings of two separate

plans:

move(blue, red, table)

move(red, table, blue)

A partial-order plan is one which specifies only the
necessary ordering information. One partial-order

move(green, yellow, table)

move(yellow, table, green)

plan may have many total-orderings

Plan-space planning

Plan-space planning is a kind of approach to
planning that produces partial-order plans.

It follows the least-commitment principle:

Do not add constraints (eg action ordering) to a plan until
it becomes necessary to ensure the correctness of the
plan.

Planning as plan-space search

A search through the space of plans.

Nodes in this search represent incomplete plans —
plans with some steps missing.

Edges represent refinements — additional actions or
constraints that can be added to make new plans.

Partial Order Planning

Planning as search:
Start with the empty plan
While there are goals unsatisfied:
Pick an unsatisfied goal (Generate)
Add an action that satisfies it (Select)

Resolve conflicts (Refine/Prune)

Adding Actions

partial plan contains actions
initial state
goal conditions

set of operators with different variables

reason for adding new actions
to achieve unsatisfied preconditions
to achieve unsatisfied goal conditions

Plan-Space Search

Adding Actions: Example

1:move(r,,l,,m,)

initial state preconditions || effects

[attached(pile,loc) | [_at(r,m,) |

loccupied(m,)|

| in(cont,pile) |

| top(cont,pile) | [~occupied(l,)

| on(cont,pallet) | | at(rpl) |

| belong(crane,locl) |

| empty(crane) |

ladjacent(locl,loc2)] 2:load(k,,5,Co,1)
|adjacent(loc2,locl) | preconditions || effects
| at(robot,loc2) | |_empty(k,) |

[occupied(loc2) | | loaded(r,,c,) |
[=holding(k,,C,)]

| unloaded(robot) |

| “unloaded(r.) |

Plan-Space Search

Adding Causal Links

partial plan contains causal links

links from the provider
an effect of an action or
an atom that holds in the initial state

to the consumer
a precondition of an action or

a goal condition

reasons for adding causal links

prevent interference with other actions

Plan-Space Search

Adding Causal Links: Example

initial state

| attached(pile,loc) |

| in(cont,pile) |

| top(cont,pile) |

| on(cont,pallet) |

| belong(crane,locl) |

| empty(crane) |

[adjacent(loc,loc2)é]

|adjacent(loc2,locl) |
| at(robot,loc2) |
| occupied(loc2) |

1:move(r,,l,,m,)

preconditions

effects

| Jat(ry,ly) |

|_at(r;,my) +‘

[at(rl) |
[Eoccupied(@my)] || [occupied(m,) [

.f{adjacent(ll,ml)| I=occupied(l,)|

2:load(k.,!,,C.,1»)

| unloaded(robot) |

preconditions

effects

|_empty(k,) |
| loaded(r,.c,) ||| .
[Sholding(k,c))] | |+
| ~unloaded(r,) +

Plan-Space Search

~] goal

D at(robot,loc?) |

~unloaded(robot) |

causal link:

Adding Variable Bindings

partial plan contains variable bindings
new operators introduce new (copies of) variables into the plan
solution plan must contain actions

variable binding constraints keep track of possible values for
variables and co-designation

reasons for adding variable bindings
to turn operators into actions

to unify and effect with the precondition it supports

Plan-Space Search

Adding Variable Bindings: Example

1:move(ry,l,,m;)

initial state preconditions || effects

oal
| attached(pile,loc) | | at(r,m,) 8 g

[in(contpile) | [Seeeupied@m) || [occupiedmyl || " M at(robot,loc2) |
wadjacent(l,,m,)] || [~occupied()| || .~ [=unloaded(robot) |

| top(cont,pile) | .
[on(cont,pallet) | |_at(rl) 9
| belong(crane,locl) | i

[_empty(crane) || _ .
[adjacent(locl,loc2)é] variable bindings:

ladjacent(loc2,locl)] .

[at(robot,loc?) | variable | = +

[occupied(loc2) | n robot

| _unloaded(robot)] I, locl | loc2
m, loc2

Plan-Space Search

Adding Ordering Constraints

partial plan contains ordering constraints

binary relation specifying the temporal order between
actions in the plan

reasons for adding ordering constraints
all actions after initial state
all actions before goal
causal link implies ordering constraint

to avoid possible interference

Plan-Space Search

Adding Ordering Constraints: Example

initial state

| attached(pile,loc) |

| in(cont,pile) |

| top(cont,pile) |

| on(cont,pallet) |

| belong(crane,locl) |

| empty(crane) |

[adjacent(loc,loc2)é]

|adjacent(loc2,locl) |
| at(robot,loc2) |
| occupied(loc2) |

1:move(ry,l;,m;)

preconditions

effects
| at(r,,m,) +‘
loccupied(m,)|

1'{ adjacent(l,,m,)|

I~occupied(l,)|

| Jat(ry,ly) |

-

2:load(k,,l,,c.,r,)

| unloaded(robot) |

preconditions

effects

empty(k,) |

loaded(r,,c,) |

[Sholding(k,c))] | |+

~unloaded(r,) +

Plan-Space Search

" goal

D at(robot,loc?) |

~unloaded(robot) |

ordering constraint:

>

Threat: Example

1:move(robot,locl,loc?)

preconditions

effects

| at(robot,loc2) e14.

| occupied(loc?) |

Imoccupied(locl)|

| ~at(robot,loc1) |

3:move(robot,loc2,locl)

preconditions

effects

| at(robot,locl) e},

| occupied(locl) |

Imoccupied(loc?)|

I

]
X]
"y
......
gy
L]
L]

0:goal
T at(robot,loc?)
<

~unloaded(robot)|

~unloaded(robot)

2:Ioad(crane,locl,cont,ro'b_ot)

| mat(robot,loc?) |

preconditions effecté._
I [belong(crane,locd)] || [empty(crane) |
atroberiocr. || MMM | | loadedtjobot.cont) |

[=unloaded(robot) |

Plan-Space Search

Threats

An action q, in a partial plan T = (A,X,B,L) is a
threat to a causal link
(a; —[p] 2 a)) iff:
a, has an effect 7q that is possibly inconsistent with p,
i.e. g and p are unifiable;

the ordering constraints (a;<q,) and (a,<a)) are
consistent with <; and

the binding constraints for the unification of g and p are
consistent with B.

Plan-Space Search

Flaws

A flaw in a plan T = (A,X,B,L) is either:

an unsatisfied sub-goal, i.e. a precondition of an action
in A without a causal link that supports it; or

a threat, i.e. an action that may interfere with a causal
link.

Plan-Space Search

Plan-Space Planning as a Search
Problem

given: statement of a planning problem P=(O,s.,g)

define the search problem as follows:
initial state: ™, = ({init, goal},{(init<goal)}{}{})
goal test for plan state p: p has no flaws
path cost function for plan mt: ||

successor function for plan state p: refinements of p that
maintain < and B

Plan-Space Search

PSP Procedure: Basic Operations

PSP: Plan-Space Planner
main principle: refine partial 7T plan while maintaining <
and B consistent until 7T has no more flaws

basic operations:
find the flaws of 1, i.e. its sub-goals and its threats
select one of the flaws
find ways to resolve the chosen flaw
choose one of the resolvers for the flaw

refine 1T according to the chosen resolver

Plan-Space Search

PSP: Pseudo Code

function PSP(plan)
allFlaws € plan.openGoals() + plan.threats()
if allFlaws.empty() then return plan
flaw €< allFlaws.selectOne()
allResolvers € flaw.getResolvers(plan)
if allResolvers.empty() then return failure
resolver < allResolvers.chooseOne()
newPlan € plan.refine(resolver)

return PSP(newPlan)

Plan-Space Search

PSP: Choice Points

resolver < allResolvers.chooseOne()

non-deterministic choice

flaw €< allFlaws.selectOne()

deterministic selection

all flaws need to be resolved before a plan becomes a
solution

order not important for completeness

order is important for efficiency

Plan-Space Search

Partial Order Planning Example
-

-1 Four block problem:

am °

i

GOAL

Causal link Finish

Threat \ (R,B) on(G,Y) < Open goals
not (clear (B)) on(G,Y)
move(R,T,B) - ‘move(G,T,Y)
clear (clear(B7\"~\Qp(G,T) clear (G) clear (Y)
Temporal - on(B,T) clear(Y)
constraint ~~ move(B,Y,T)
on(B,Y) clear (B)

clear (R) on(B,Y) clear(B) on(G,T) clear (G)
Start

Plan-Space Search: Initial Search State

Example
_

Plan-Space Search

PSP Implementation: PoP

extended input:
partial plan (as before)

agenda: set of pairs (a,p) where a is an action an p is
one of its preconditions

search control by flaw type
unachieved sub-goal (on agenda): as before

threats: resolved as part of the successor generation
process

Plan-Space Search

PoP: Pseudo Code (1)

function PoP(plan, agenda)
if agenda.empty() then return plan
(a,p,) € agenda.selectOne()
agenda € agenda - (a_,p,)
relevant < plan.getProviders(p,)
if relevant.empty() then return failure
(0,,p,,0) < relevant.chooseOne()
plan.L < plan.L U (o, —[p]2a,)
plan.B €< plan.B U ©

Plan-Space Search

PoP: Pseudo Code (2)

if a, ¢ plan.A then
plan.add(a)
agenda € agenda + a,.preconditions

newPlan € plan

for each threat on (a, —[p]2a,) or due to a_ do
allResolvers < threat.getResolvers(newPlan)
if allResolvers.empty() then return failure
resolver € allResolvers.chooseOne|)
newPlan < newPlan.refine(resolver)

return PSP(newPlan,agenda)

Plan-Space Search

