
OPPA European Social Fund
Prague & EU: We invest in your future.

PLANNING GRAPHS

Planning Graphs

 Planning graphs are an efficient way to create a

representation of a planning problem that can be

used to

Achieve better heuristic estimates

Directly construct plans

 Planning graphs only work

for propositional problems.

Planning Graphs

 Planning graphs consists of a seq of levels that

correspond to time steps in the plan.

 Level 0 is the initial state.

Each level consists of a set of literals and a set of

actions that represent what might be possible at

that step in the plan

Might be is the key to efficiency

Records only a restricted subset of possible

negative interactions among actions.

Planning Graphs

 Each level consists of

 Literals = all those that could be true at that time

step, depending upon the actions executed at

preceding time steps.

 Actions = all those actions that could have their

preconditions satisfied at that time step, depending

on which of the literals actually hold.

PG Example

Init(Have(Cake))

Goal(Have(Cake) Eaten(Cake))

Action(Eat(Cake),

PRECOND: Have(Cake)

EFFECT: ¬Have(Cake) Eaten(Cake))

Action(Bake(Cake),

PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

PG Example

Create level 0 from initial problem state.

PG Example

Add all applicable actions.

Add all effects to the next state.

PG Example

Add persistence actions (inaction = no-ops) to

map all literals in state Si to state Si+1.

PG Example

Identify mutual exclusions between actions and

literals based on potential conflicts.

Mutual exclusion

 A mutex relation holds between two actions when:
 Inconsistent effects: one action negates the effect of another.

 Interference: one of the effects of one action is the negation of a
precondition of the other.

 Competing needs: one of the preconditions of one action is mutually
exclusive with the precondition of the other.

 A mutex relation holds between two literals when:

 one is the negation of the other OR

 each possible action pair that could achieve the literals is

mutex (inconsistent support).

Cake example

 Level S1 contains all literals that could result from
picking any subset of actions in A0

 Conflicts between literals that can not occur together
(as a consequence of the selection action) are
represented by mutex links.

 S1 defines multiple states and the mutex links are the constraints that
define this set of states.

Cake example

 Repeat process until graph levels off:

 two consecutive levels are identical, or

 contain the same amount of literals

(explanation follows later)

The GRAPHPLAN Algorithm

 Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph INITIAL-PLANNING-GRAPH(problem)

goals GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

if solution failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph EXPAND-GRAPH(graph, problem)

GRAPHPLAN example

 Initially the plan consist of 5 literals from the initial state and the CWA literals (S0).

 Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)

 Also add persistence actions and mutex relations.

 Add the effects at level S1

 Repeat until goal is in level Si

GRAPHPLAN example

 EXPAND-GRAPH also looks for mutex relations

 Inconsistent effects

 E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)

 Interference

 E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT

 Competing needs

 E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

 Inconsistent support

 E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

GRAPHPLAN example

 In S2, the goal literals exist and are not mutex with any other

 Solution might exist and EXTRACT-SOLUTION will try to find it

 EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process:

 Initial state = last level of PG and goal goals of planning problem

 Actions = select any set of non-conflicting actions that cover the goals in the state

 Goal = reach level S0 such that all goals are satisfied

 Cost = 1 for each action.

GRAPHPLAN Termination

 Termination? YES

 PG are monotonically increasing or decreasing:

 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

 Because of these properties and because there is

a finite number of actions and literals, every PG

will eventually level off

Dinner Date example

 Initial Conditions: (and (garbage) (cleanHands) (quiet))

 Goal: (and (dinner) (present) (not (garbage))

 Actions:
 Cook :precondition (cleanHands)

:effect (dinner)

 Wrap :precondition (quiet)

:effect (present)

 Carry :precondition

:effect (and (not (garbage)) (not (cleanHands))

 Dolly :precondition

:effect (and (not (garbage)) (not (quiet)))

Dinner Date example

Dinner Date example

Dinner Date example

Rocket domain

Planning Graph Example

Rocket problem

OPPA European Social Fund
Prague & EU: We invest in your future.

