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Review: Classical Representation
● Function-free first-order language L
● Statement of a classical planning problem: P = (s0, g, O)
● s0: initial state - a set of ground atoms of L
● g: goal formula - a set of literals
● Operator: (name, preconditions, effects)

● Classical planning problem:  P = (Σ, s0, Sg)
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Review: Set-Theoretic Representation
● Like classical representation, but restricted to propositional logic
● State: a set of propositions - these correspond to ground atoms

◆ {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}
● No operators, just actions

take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,

            empty-crane1, top-c3-p1, on-c3-c1
delete:    empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add:        holding-crane1-c3, top-c1-p1

● Weaker representational power than classical representation
◆ Problem statement can be exponentially larger
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Review: State-Variable Representation
● A state variable is like a record structure in a computer program

◆ Instead of on(c1,c2) we might write cpos(c1)=c2
● Load and

unload
operators:

● Equivalent power to classical representation
◆ Each representation requires a similar amount of space
◆ Each can be translated into the other in low-order polynomial time

● Classical representation is more popular, mainly for historical reasons
◆ In many cases, state-variable representation is more convenient
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Motivation
● Recall that in classical planning, even simple problems can have

huge search spaces
◆ Example:

» DWR with five locations, three
piles, three robots, 100 containers

» 10277 states
» About 10190 times as many states as there are particles in

universe
● How difficult is it to solve classical planning problems?
● The answer depends on which representation scheme we use

◆ Classical, set-theoretic, state-variable

location 1 location 2

s0
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Outline
● Background on complexity analysis
● Restrictions (and a few generalizations) of classical planning
● Decidability and undecidability
● Tables of complexity results

◆ Classical representation
◆ Set-theoretic representation
◆ State-variable representation
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Complexity Analysis

● Complexity analyses are done on decision problems or
language-recognition problems
◆ A language is a set L of strings over some alphabet A
◆ Recognition procedure for L

» A procedure R(x) that returns “yes” iff the string x is in L
» If x is not in L, then R(x) may return “no” or may fail to

terminate
● Translate classical planning into a language-recognition

problem
● Examine the language-recognition problem’s complexity
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Planning as a Language-Recognition
Problem

● Consider the following two languages:

PLAN-EXISTENCE = {P : P is the statement of a planning
problem that has a solution}

PLAN-LENGTH = {(P,n) : P is the statement of a planning
        problem that has a solution of length ≤ n}

● Look at complexity of recognizing PLAN-EXISTENCE and
PLAN-LENGTH under different conditions
◆ Classical, set-theoretic, and state-variable representations
◆ Various restrictions and extensions on the kinds of operators

we allow
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Complexity of Language-Recognition
Problems

● Suppose R is a recognition procedure for a language L
● Complexity of R

◆ TR(n) = worst-case runtime for R on strings in L of length n
◆ SR(n) = worst-case space requirement for R on strings in L of

length n
● Complexity of recognizing L

◆ TL = best asymptotic time complexity
of any recognition procedure for L

◆ SL = best asymptotic space complexity
of any recognition procedure for L
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Complexity Classes
● Complexity classes:

◆ NLOGSPACE (nondeterministic procedure, logarithmic space)
 ⊆ P (deterministic procedure, polynomial time)
 ⊆ NP (nondeterministic procedure, polynomial time)
 ⊆ PSPACE (deterministic procedure, polynomial space)
 ⊆ EXPTIME (deterministic procedure, exponential time)
 ⊆ NEXPTIME (nondeterministic procedure, exponential time)
 ⊆ EXPSPACE (deterministic procedure, exponential space)

● Let C be a complexity class and L be a language
◆ Recognizing L is C-hard if for every language L' in C, L' can be

reduced to L in a polynomial amount of time
» NP-hard, PSPACE-hard, etc.

◆ Recognizing L is C-complete if L is C-hard and L is also in C
» NP-complete, PSPACE-complete, etc.
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● Do we give the operators as input to the planning algorithm,
or fix them in advance?

● Do we allow infinite initial states?
● Do we allow function symbols?
● Do we allow negative effects?
● Do we allow negative preconditions?
● Do we allow more than one precondition?
● Do we allow operators to have conditional effects?*

◆ i.e., effects that only occur when additional preconditions
are true

Possible Conditions

These take us
outside classical
planning
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Decidability of Planning

Next: analyze complexity for the decidable cases

Halting problem

Can cut off the
search at every
path of length n
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Complexity of Planning

α no operator has >1 precondition

γ PSPACE-complete or
NP-complete for some
sets of operators
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● Caveat: these are worst-case results
◆ Individual planning domains can be much easier

● Example:  both DWR and Blocks World fit here  , but neither is that hard
◆ For them, PLAN-EXISTENCE is in P and PLAN-LENGTH is NP-complete
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● Often PLAN-LENGTH is harder than PLAN-EXISTENCE
● But it’s easier here:

◆ We can cut off every search path at depth n
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Equivalences
● Set-theoretic representation and ground classical representation are

basically identical
◆ For both, exponential blowup in the size of the input
◆ Thus complexity looks smaller as a function of the input size

● Classical and state-variable representations are equivalent, except that
some of the restrictions aren’t possible in state-variable representations
◆ Hence, fewer lines in the table

Classical
representation

State-variable
representation

Set-theoretic or
ground classical
representation

trivial

P(x1,…,xn)
becomes

fP(x1,…,xn)=1

write all of
the ground
instances

f(x1,…,xn)=y
becomes

Pf(x1,…,xn,y)
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β every operator with >1 precondition
is the composition of other operators

α no operator has >1 precondition

Like
classical
rep, but
fewer
lines in
the table


