
Two-players Games



 two-players games

 zero-sum games

 no chance nodes

 perfect information

 chess, checkers, ... 

 note – the algorithms return a value, but we need a solution

 backup function

Reminder and





 function alphabeta(node, depth, α, β, Player)         
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, not(Player) ))     

 if (β≤α)  break                     

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player) ))     

 if (β≤α)   break                             

 return β 

Reminder (2)



 function negamax(node, depth, α, β, color)         
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, -color ))     

 if (β≤α)  break                     

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player) ))     

 if (β≤α)   break                             

 return β 

Step 1 - Negamax



 *α, β+ interval – window

 alphabeta initialization [-∞, +∞+

 what if we use *α0, β0]

 x = alphabeta(node, depth, α0, β0,player)

 α0 ≤ x ≤ β0  - we found a solution

 x ≤ α0 - failing low (run again with [-∞, x+)

 x ≥ β0 - failing high (run again with *x, +∞+)

Step 2 – Aspiration Search



 assume we are in a MAX node

 we are about to search a child 'c'

 we already have obtained a lower bound 'α'

 Is it worth searching the branch 'c'?

 we need to have some test ...

Step 3 – Scout – Idea



 what we really need at that moment is a bound (not the 
precise value)

 Remember Aspiration Search?

 x ≤ α0 - failing low (we know, that solution is ≤ x)

 x ≥ β0 - failing high (we know, that solution is ≥ x)

 What if we use a null-window *α, α+1+ (or *α,α])?

 we obtain a bound … 

Step 3 – Scout – A Test



function negascout(node, depth, α, β, color)         

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, -color ))

 if (( α < v < β ) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, -color ))

 α := max(α, v)

 if (β≤α)  break                     

 b := α + 1

 return α

Step 3 – NegaScout



 also termed Principal Variation Search (PVS)

 dominates alphabeta (never evaluates more nodes than 
alphabeta)

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

Step 3 – NegaScout



 Memory-enhanced Test Driver 

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293  

Step 4 – MTD



Other Games - Chance nodes



Other Games – Imperfect Information



 checkers – 1994 Chinook ... now a solved game (the program 
cannot loose)

 chess – 1997 Deep Blue, …, computers are now too strong

 go – best human players are still undefeated, but … (see 
http://www.computer-go.info/h-c/index.html)

 poker – 2008 best program (Polaris) can beat a human master

 … and many, many others (Hex, Havannah, ...)

 University of Alberta

 Computer Olympiad

Games and AI

http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html


 simultaneous moves, imperfect information

 durative moves (asynchronous chess, Google AI Challenge, ...) 

 General Game Playing

 an algorithm receives rules of the game and has to play

 ARIMAA (created in 2002)

 BF ≈ 17,000; no opening books; very few patterns

 easy for people, very difficult for an algorithm

 using a 'real-AI-algorithms' in computer video-games

 very few examples: F.E.A.R., World In Conflict, ...

Challenges?


