Introduction to Scheduling,
Scheduling Algorithms

Jiri Vokrinek
A4M33PAH - 26.3.2012

Planning and Scheduling

* planning
— problem: search for feasible set of actions fulfilling a goal
— plan: partially ordered set of actions
— actions: fully instantiated operators

* scheduling:
— problem: find an assignment of resources to actions
— plan: sequence of resource-action assignment in time

— can be modelled as parameters of an action

e problem: planning algorithms tries out all possibilities (inefficient)
— alternative approach:

 allow unbound resource variables in plan (planning)

* find assignment of resources to actions (scheduling)

Planning Techniques

project planning
Material Resource Planning (MRP)
batch scheduling T

hodina 1 2 3 4 5 6 7 g 9 0 | 1 | 12 13 | 14 | 15
tas 7:30-9:00 | 9:15-10:45 | 11:00-12:30 | 12:45-14:15 | 14:30-16:00 | 16:15-17:45 | 18:00-19:30 | 20:30
l ﬁﬁff Lfdsk'aprf AZM34MIM - Pre *‘j"'EquBa'l’i‘k' ':’e A4M33PAH - Pre
a S O r e rl ng o M. Husak Morenar " | M. Péchoutek
1 (29 stud.) 1 @7stud) | o gy | 1 (23stud)

. A2M34NST - Pre
(e M. Husak

room scheduling .

M. Husak
1 (0 stud.)

notch planning 7 U

project planning techniques: Q0
b%
— Gantt charts AYe) 27/ 000)

— Program Evaluation and Review Technique
— critical path analyses

o5 G WOOK s v

= 88

L ek ERES

Gantt Chart

info Task Name

H
g
2

§§

DA

0 $ig) fe BAEY i@

|

fii

b WM e

|
!
|

z==-2‘ .I-.ml >

S || L | Getmeteproject .| - f
5 Lo | Preouce locaknat.. 2
$ |l | Estate costs X
f o4 i‘ ! Mrﬂu aa»
8 | [T U seaneprapas i
9.1 {1 1 }-Oefwprelming Ay
0 | L1 Defepramctc ¥
s | | Seawecorereso.. v
2 L. Scpecomgiete | 05
3 |G Analysis/Plaaning | 384
14 { i | - Edentfy locabat.. 54
15 | ldentify Comp... 54
% |) Software C... sd
17 } | Setp

| i User inte.....

]

HERCL AR

I-I-Ancillary C...

(LS.

i W 7 0 |15 16 s 22 125 |26 a1

< IFMz

s s

2004
~. T;-

J12 Tis Tis 21 os T2

1L O
y e |7 lw0 13 18 [19 T2 s

i

T o [

Program Evaluation and Review
Technique (PERT)

120348878 0 0w —m 7. 0120 2] 22]) a2 20 4 4 231 & 1 07 ol 8

Actions and Resources

* resources: an entity needed to perform an
action
— state variables: modified by actions in absolute
ways
e example: move(r,L/l’):
* location changes from /to [/’
— resource variables: modified by actions in relative
ways
e example: move(r,Ll’):
* fuel level changes from f to f-f’

Actions with Time Constraints

* Letabe an actionin a planning domain:

— attached time constraints:
* earliest start time: s, (a) — actual start time: s(a)
* latest end time: s, (a) —actual end time: e(a)
e duration: d(a)

* action types:

— preemptive actions: cannot be interrupted
* d(a)=e(a) - s(a)
— non-preemptive actions: can be interrupted

* resources available to other actions during interruption

Actions with Resource Constraints

e Let a be an action in a planning domain:

— attached resource constraints:

* required resource: r

e quantity of resource required: g

— reusable: resource will be available to other actions
after this action is completed

— consumable: resource will be consumed when

action is complete

Q4] |

‘ Q’zi

1 (29

Bud]

fusak
1 (27 sted.)

Reusable Resources

* resource availability:

— total capacity: Q,

— current level at time t: z,(t)
* resource requirements:

— require(a,r,g): action a requires g units of resource r while it is
active

* resource profile:
ZI’

Q 4

d,

v

Consumable Resources

* resource availability:
— total reservoir at t;: Q,
— current level at time t: z,(t)

* resource consumption/production:
— consume(a,r,q): action a requires g units of resource r
— produce(a,r,q): action a produces g units of resource r

* resource profile:

r

A
U, o

v

Other Resource Features

discrete vs. continuous

— countable number of units: cranes, bolts
— real-valued amount: bandwidth, electricity

unary

— Q,=1; exactly one resource of this type available

sharable

— can be used by several actions at the same time

resources with states

— actions may require resources in specific state

Combining Resource Constraints

* conjunction:
— action uses multiple resources while being performed

* disjunction:
— action requires resources as alternatives
— cost/time may depend on resource used

* resource types:
— resource-class(s) = {ry,...,r,}: require(a,s,q)
— equivalent to disjunction over identical resources

Cost Functions and Optimization
Criteria

e cost function parameters
— guantity of resource required
— duration of requirement
* optimization criteria:
— total schedule cost
— makespan (end time of last action)
— weighted completion time
— (weighted) number of late actions

— (weighted) maximum tardiness
— resource usage

Planning vs. Scheduling

* Planning
— feasibility of plan for ONE goal
— duration (number of actions) in a plan

e Scheduling
— utilization of resource(s) for ALL plans
— total schedule cost or duration

* [tis hard to optimize both together ...

Machine Scheduling

* machine: resource of unit capacity
— either available or not available at time t
— cannot process two actions at the same time
* jobj: partially ordered set of actions a,,...,a;
— action aj; requires
* oneresource type
e for a number of time units

— actions in same job must be processed sequentially
— actions in different jobs are independent (not ordered)
* machine scheduling problem:
— given: n jobs and m machines
— schedule: mapping from actions to machines + start times

Material Resource Planning

* machine: resource of countable capacity
— available amount r; at time ¢,
— can process any number of actions at the same time if
r>=0
* jobj: partially ordered set of actions a,,...,a;
— action agj; requires
* [resource types of g number each
e for a number of time units

— actions in same job must be processed sequentially

— actions in different jobs are independent (not ordered)
* material resource planning problem:

— given: n jobs and m machines

— supply report: consumption of resources capacity by
actions in time

Example: Scheduling Problem

* machines:

— m, of resource type r,

— m,, m, of resource type r,
* jobs:

—j1:{ry(3), ry(3), ry(3))

* three actions, totally ordered
* a,, requires 3 units of resource type 1, etc.

— J5: (ry(3), r1(5))
_j3: <I’1(3), r1(2); r2(3); r1(5)>

Example: Schedules by Job

* machines:

—m, of type r,

—m, of typer,

* jobs:
—Jj1:(r1(1), ry(2))
— J5:(r1(3), rp(1))

Example: Schedules by Machine

* machines:
m,
—m, of type r,
—m, of typer, m;
* jobs:
— Jy: {r1(1), r,(2)) '
1 1 2 ml

— J5:{r1(3), ry(1))

Assignable Actions

e Let P be a machine scheduling problem. Let S
be a partially defined schedule.

* An action g; of some job j,in P is unassigned if
it does not appear in S.

* An action g; of some job j,in P is assignable if
it has no unassigned predecessors in S.

Example: Assignable Actions

* problem P: partial schedule S:

— machines: |

* m, of typer, ml
* m,of typer,
— jobs: m,
* J1:(ra(1), ry(2))
o j,:(r(3), ry(1)) — unassigned:
* j3:{r(3), ry(1), ri(3)) * Uy U3y, 03, U33
— assignable:

* 0y, 03

Earliest Assignable Time

* Let g; be an assignable action in S. The earliest
assignable time for a; on machine min Sis:

— the end of the last action currently scheduled on
min S, or

— the end of the last predecessor (aj, ... ;1) in S, or
— the earliest start time s,;.(a;),

whichever comes later.

Example: Earliest Assignable Time

* problem P partial schedule S:

(R2|prec|C_max): |

— machines: m,
* m, of typer,
* m, of typer, m2
— jobs: 0 2 4 6

* ji:{r.(1), ry(2))
* Jy:{r.(3), ry(1))
* j3: <r1(3)r r2(1)l r1(3)>

— earliest assignable time for
a,, on m,: 4

— earliest assignable time for
a;;onmy:4

Heuristic Search

heuristicScheduler(P,S)
assignables < P.getAssignables(S)
if assignables.isEmpty() then return S
action €< assignables.selectOne()
machines < P.getMachines(action)
machine € machines.selectOne()
time < S.getEarliestAssignableTime(action, machine)
S & S + assign(action, machine, time)
return heuristicScheduler(P,S)

Scheduling Algorithms

First In, First Out (FIFO) known also as First
Come, First Served (FCFS)

Last In, First Out (LIFO)
Shortest Remaining Time First (SRTF), Shortest

Job First (SJF)

oriority ordering

Round-robin (RR) scheduling
critical path priority ordering

Scheduling Algorithms

 scheduling problem al|B|y

o — machine environment: 1 (single machine),
Pm (m identical machines), Qm (as P with
different speeds), Rm (as P, but unrelated)

* B — problem specs: r; (release time), d.
(deadline), pmtn (preemptive), size; (multi-
machine), prec (precedences), ...

L E T

max’

* y—objective function: C,_._,,
Z Ci:ZLi’Z Ei’Z Ti)

the scheduling zoo: http://www-desir.lip6.fr/~durrc/query/

max’ — max’

Example: FCFS

* First In, First Out (FIFO) known also as First
Come, First Served (FCFS)

* problem — average waiting time depends on
arrival order

e advantage —simple algorithm

J1 2 | s

Example: LIFO

e Last In, First Out (LIFO)

e problem — early processes may never be
served (for dynamic scheduling)

e advantage — newly arrived jobs have low
response times

J3 P J1

Example: SJIF

e Shortest Job First (SJF)

e provably optimal for minimizing average
waiting time

| s 1

Example: SRTF

* Shortest Remaining Time First (SRTF)
* preemptive variant of SJF

’ Smin(jz) =10

J3 I [P It
0 6 10 13 24

Example: critical path

* problem P (P|prec|C_max):
— job:
¢ J <al(1)l 02(2)/ 03(3)1 04(1)1 05(3)/ 06(1)/ a7(3)>
* 0,<a,, 0,05, 0;<0d,, 0,<0c, 0:<05, 0,<0,, 0;<0,

Example: critical path

* problem P (P|prec|C_max):
— job:
¢ j <al(1)l 02(2)/ 03(3)1 04(1)1 05(3)/ 06(1)/ 07(3)>
* 0,<a,, 0,05, 0;<0d,, 0,<0c, 0:<05, 0,<0,, 0;<0,

critical path length: 9

Example: critical path

* problem P (1|prec|C_max, P2|prec|C _max):
— job:
* j:4a,(1), 0,(2), a5(3), a,(1), as(3), ag(1), a,(3))
* a,<a,, 0,03, 4,<0,, 0,<ds, A:<0,, 0,<05, 0;<0,
— machines: m, of one type (upper-bound schedule length = 14)

m, SO 1

— machines: m;, m, of the same type
— (with unlimited machines: lower-bound schedule length = 9)

Literature

 Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning — Theory and Practice, chapter 15.
Elsevier/Morgan Kaufmann, 2004.

* Michael Pinedo. Scheduling: Theory, Algorithms and
Systems, Prentice Hall, 2001.

* Peter Brucker. Scheduling Algorithms, Springer Verlag,
2004.

