PRA|HA
OPP PRA|GUE

PRA|GA

A PRA|G

* X
* *
* *
* *

* 4 *

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.




PLANNING GRAPHS



Planning Graphs

Planning graphs are an efficient way to create
a representation of a planning problem that
can be used to

Achieve better heuristic estimates
Directly construct plans

Planning graphs only work
for propositional problems.



Planning Graphs

Planning graphs consists of a seq of levels
that correspond to time steps in the plan.

Level O Is the initial state.

Each level consists of a set of literals and a
set of actions that represent what might be
possible at that step in the plan

Might be Is the key to efficiency

Records only a restricted subset of
possible negative interactions among
actions.



Planning Graphs

Each level consists of

Literals = all those that could be true at that
time step, depending upon the actions
executed at preceding time steps.

Actions = all those actions that could have
their preconditions satisfied at that time step,
depending on which of the literals actually

hold.



PG Example

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT. "Have(Cake) A Eaten(Cake))

Action(Bake(Cake),
PRECOND: = Have(Cake)

EFFECT: Have(Cake))



PG Example

SU AU 81

Have(Cake)

— Eaten(Cake)

Create level O from initial problem state.



PG Example

SU AU 81

Have(Cake)
\ —Have(Cake)
Eat(Cake) <

Eaten(Cake)
— Eaten(Cake)

Add all applicable actions.

Add all effects to the next state.



PG Example

SU AU S’I

Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

Add persistence actions (inaction = no-ops) to
map all literals in state S; to state S,;.



PG Example

SU AU S’I

Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

|dentify mutual exclusions between actions and
literals based on potential conflicts.



Mutual exclusion

A mutex relation holds between two actions

when:
Inconsistent effects: one action negates the effect of another.

Interference: one of the effects of one action is the negation of
a precondition of the other.

Competing needs: one of the preconditions of one action is
mutually exclusive with the precondition of the other.

A mutex relation holds between two literals
when:
one is the negation of the other OR

each possible action pair that could achieve the literals
IS mutex (inconsistent support).



Cake example

So Ao Sy
Have(Cake) = Have(Cake)
\ —1Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = |Eaten(Cake)

Level S, contains all literals that could result from
picking any subset of actions in A,

Conflicts between literals that can not occur together
(as a consequence of the selection action) are
represented by mutex links.

S1 defines multiple states and the mutex links are the constraints
that define this set of states.



Cake example

S, Ag S
Have(Cake) - Have(Cake)
\ — Have(Cake)
Eat(Cake)
< Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)

- Repeat process until graph levels off:

As

Bake(Cake)

Vi

™

X

J

=

J

£

Eat(Cake)

g m

two consecutive levels are identical, or
contain the same amount of literals

(explanation follows later)

S»

Have(Cake
— Have(Cake)

Eaten(Cake)
— Eaten(Cake)



The GRAPHPLAN Algorithm

Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph < INITIAL-PLANNING-GRAPH(problem)
goals « GOALS[problem]
loop do
If goals all non-mutex in last level of graph then do

solution «— EXTRACT-SOLUTION(graph, goals,
LENGTH(graph))

If solution = failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return
failure

graph « EXPAND-GRAPH(graph, problem)



GRAPHPLAN example

At(Spare, Trunk)

Sz
At(Spare, Trunk)

Remove(Spare, Trunk)

At(Spare, Trunk) \ (T,

— At(Spare, Trunk)

Remove(Flat, Axle)

— At(Spare, Trunk)

Remove(Spare, Trunk)
Remove Flat.AxIe
i /’_‘

At(Flat Axle)

\

At(Flat, Axle)

At(Flat,Axle)

——/\
T (S AR

I
°”e'"'g“’

PutOn(Spare Axle)

1
L

—At(Spare,Axie)

'A\

—At(Spare,Axie)
At{Spare Axle)

™1
s

— At{Spare,Axle)
\\\\ — At{Flat.Ground) //

— At(Flat, Ground)

— At{Flat,Ground)
\\\\ At(Flat, Ground)

Y At(Flat Ground) /
3 —At(Spare, Ground)

— At(Spare, Ground)

\ﬁ At(Spare, Ground)
At(Spare,Ground)

CLE] El_,[]

\ At(Spare, Ground) /

Initially the plan consist of 5 literals from the initial state and the CWA literals

O
(S0).
o Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
o Also add persistence actions and mutex relations.
o Add the effects at level S1
o Repeat until goal is in level Si



S1
At(Spare, Trunk)

At(Spare Trunk)
\ Remove(Spare, Trunk)

Remove(Flat Axle

—At(Spare, Trunk)

At(Flat,Axle) Y \E\ At(Flat Axle)
| LeaveOvernight —At(Flat Axle)
—At(Spare,Axle) {3 \\ — At(Spare,Axle)
—At(Flat, Ground) {7} \ —At(Flat,Ground)
\\ At(Flat Ground)
—At(Spare, Ground) } —At(Spare, Ground)

\

At(Spare, Ground)

A, 85
At(Spare, Trunk)
Remove(Spare, Trunk) \
——) — At{Spare, Trunk)
Remove(Flat, Axle)
/'_' At(Flat,Axie)
At{Flat, Axl
N N —AY. e)
| LeaveOvernight
£, — At(Spare,Axie)
PutOn(Spare Axle) At(Spare Axle)
At(Flat, Ground)

— At(Spare, Ground)
At(Spare,Ground)

B
B




GRAPHPLAN example

4. A, S, A S,
At(Spare, Trunk) {} At(Spare, Trunk) < O] At(Spare, Trunk)
 Femove(Spare Trumd |
Remove(Spare,Trunk) — At(Spare, Trunk) 3 - — At{Spare, Trunk)
| Remove(Flat Axle) | Remove(Flat, Axle) \/
At(Flat Axle) {} Ai(Flat,Axle)

V —At(Flat, AX/S)

l
LeaveOvernlght “\
-‘\‘

— At{Spare,Axle)
At(Spare Axle)

— At(Flat,Ground)
\\\\ At(Flat,Ground)
— At{Spare, Ground)
\ At(Spare,Ground)

At(Flat.Axle)
% At At
— At(Spare,Axle) — At(Spare,Axle)
— At(Flat,Ground) \ — At(Flat,Ground) /
W\ At(Flat Ground)

— At(Spare, Ground) /
\At(Spare,Ground) /

| PutOn(Spare Axle) |

0

0l

— At(Spare, Ground)

LB EUJ

1 EXPAND-GRAPH also looks for mutex relations

Inconsistent effects
= E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)

Interference

= E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as
EFFECT

Competing needs

= E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

Inconsistent support
= E.g.in S2, At(Spare,Axle) and At(Flat,Axle)



GRAPHPLAN example

S, 8; A S5
At(Spare, Trunk) At(Spare, Trunk) v——-l At(Spare, Trunk)
—At(Spare, Trunk) 1 *\ — At{Spare, Trunk)
At{Flat Axle) At(Flat Axle) \ £} X At(Flat Axle)
—At(Flat Axle) “‘-‘“7 — At(Flat, Axle)
g‘
—At(Spare,Axle) — At{Spare,Axle) _\.“ — At(Spare,Axle)

— 1
\‘.

\ — At(Flat,Ground) /
\ At(Flat Ground)

— At(Spare, Ground) /
\ At(Spare, Ground)

At(Spare Axle)
— At(Flat,Ground)
\\\\ At(Flat,Ground)
— At{Spare, Ground)
\ At(Spare,Ground)

— At(Flat,Ground)

0l

— At(Spare, Ground)

N
uWsNuls!

o In S2, the goal literals exist and are not mutex with any other
Solution might exist and EXTRACT-SOLUTION will try to find it

o EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search
process:

Initial state = last level of PG and goal goals of planning problem

Actions = select any set of non-conflicting actions that cover the goals in the state
Goal = reach level SO such that all goals are satisfied

Cost = 1 for each action.



GRAPHPLAN Termination

Termination? YES

PG are monotonically increasing or decreasing:
Literals increase monotonically
Actions increase monotonically
Mutexes decrease monotonically

Because of these properties and because
there Is a finite number of actions and literals,
every PG will eventually level off



Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))

Goal: (and (dinner) (present) (not (garbage))
Actions:
Cook :precondition (cleanHands)
.effect (dinner)
Wrap :precondition (quiet)
.effect (present)
Carry :precondition

.effect (and (not (garbage)) (not (cleanHands))
Dolly :precondition

-effect (and (not (garbage)) (not (quiet)))



Dinner Date example

garb garb
u garb
cleanH cleanH
“1cleanH
quiet quiet
“1quiet
dinner

present



Dinner Date example

garb

garb
—|garD
cleanH
‘Icleanl—)
\ quiet
\ —Iquie)
dinner% \ \dinner
present/ \ present

quiet




Dinner Date example




Rocket domain

(define (operator move)
:parameters ((rocket 7r) (place ?from) (place 7to))
:precondition (zand (meq ?from 7to) (at 7r from) (has-fuel 1))
reffect (zand (at 7r 7to) (:not (at 7r Tfrom)) (:not (has-fuel ?1))))

(define (operator unload)
:parameters ((rocket 7r) (place ?p) (cargo 7c))
:precondition (zand (at 7t 7p) {(in 7¢ 7r))
reffect (zand (:not (in 7¢ 7r)) (at 7c 7p)))

(define (operator load)
:parameters ((rocket 7r) (place 7p) (cargo 7c))
:precondition (zand (at 7r ?p) (at 7¢ 7p))
reffect (zand (:not (at ¢ 7p)) (in 7¢ 7r)))



Planning Graph Example
Rocket problem

in AR inAR
load A L/ nBR J]OJL . L/ mBR
load B L/ / oad 8 L'AT—’-.

unload A P
TNGAtAP

"- i. . t t L
atB P

move L-P &%, move L-P £%, 5,
%’ 1'."1- "-n 1:" “’- ""
£ * =3 w -
at A L & o — at AL & ay—or- gt AL
1 / (N
" * LN
LA + 0
atB L / P 2> atB L ® At—" B[
Y * %
LR / "- -
at R L P % atR L ® “— 4tRL
L] [ ]
fuel R ® fuel R ® fuel R
propositions actions p;opositions EFtiOHE p;opoaitions
time 1 time 1 time 2 time 2 time 3

actions goals
time 3



PRA|HA
OPP PRA|GUE

PRA|GA

A PRA|G

* X
* *
* *
* *

* 4 *

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.




