
OPPA European Social Fund
Prague & EU: We invest in your future.

PLANNING GRAPHS

Planning Graphs

 Planning graphs are an efficient way to create

a representation of a planning problem that

can be used to

Achieve better heuristic estimates

Directly construct plans

 Planning graphs only work

for propositional problems.

Planning Graphs

 Planning graphs consists of a seq of levels

that correspond to time steps in the plan.

Level 0 is the initial state.

Each level consists of a set of literals and a

set of actions that represent what might be

possible at that step in the plan

Might be is the key to efficiency

Records only a restricted subset of

possible negative interactions among

actions.

Planning Graphs

 Each level consists of

 Literals = all those that could be true at that

time step, depending upon the actions

executed at preceding time steps.

 Actions = all those actions that could have

their preconditions satisfied at that time step,

depending on which of the literals actually

hold.

PG Example

Init(Have(Cake))

Goal(Have(Cake)  Eaten(Cake))

Action(Eat(Cake),

PRECOND: Have(Cake)

 EFFECT: ¬Have(Cake)  Eaten(Cake))

Action(Bake(Cake),

PRECOND: ¬ Have(Cake)

 EFFECT: Have(Cake))

PG Example

Create level 0 from initial problem state.

PG Example

Add all applicable actions.

Add all effects to the next state.

PG Example

Add persistence actions (inaction = no-ops) to

map all literals in state Si to state Si+1.

PG Example

Identify mutual exclusions between actions and

literals based on potential conflicts.

Mutual exclusion

 A mutex relation holds between two actions
when:
 Inconsistent effects: one action negates the effect of another.

 Interference: one of the effects of one action is the negation of
a precondition of the other.

 Competing needs: one of the preconditions of one action is
mutually exclusive with the precondition of the other.

 A mutex relation holds between two literals
when:

 one is the negation of the other OR

 each possible action pair that could achieve the literals
is mutex (inconsistent support).

Cake example

 Level S1 contains all literals that could result from
picking any subset of actions in A0

 Conflicts between literals that can not occur together
(as a consequence of the selection action) are
represented by mutex links.

 S1 defines multiple states and the mutex links are the constraints
that define this set of states.

Cake example

 Repeat process until graph levels off:

 two consecutive levels are identical, or

 contain the same amount of literals

(explanation follows later)

The GRAPHPLAN Algorithm

 Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

 graph  INITIAL-PLANNING-GRAPH(problem)

 goals  GOALS[problem]

 loop do

 if goals all non-mutex in last level of graph then do

 solution  EXTRACT-SOLUTION(graph, goals,

LENGTH(graph))

 if solution  failure then return solution

 else if NO-SOLUTION-POSSIBLE(graph) then return

failure

 graph  EXPAND-GRAPH(graph, problem)

GRAPHPLAN example

 Initially the plan consist of 5 literals from the initial state and the CWA literals

(S0).

 Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)

 Also add persistence actions and mutex relations.

 Add the effects at level S1

 Repeat until goal is in level Si

GRAPHPLAN example

 EXPAND-GRAPH also looks for mutex relations

 Inconsistent effects

 E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)

 Interference

 E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as
EFFECT

 Competing needs

 E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

 Inconsistent support

 E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

GRAPHPLAN example

 In S2, the goal literals exist and are not mutex with any other

 Solution might exist and EXTRACT-SOLUTION will try to find it

 EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search
process:

 Initial state = last level of PG and goal goals of planning problem

 Actions = select any set of non-conflicting actions that cover the goals in the state

 Goal = reach level S0 such that all goals are satisfied

 Cost = 1 for each action.

GRAPHPLAN Termination

 Termination? YES

 PG are monotonically increasing or decreasing:

 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

 Because of these properties and because

there is a finite number of actions and literals,

every PG will eventually level off

Dinner Date example

 Initial Conditions: (and (garbage) (cleanHands) (quiet))

 Goal: (and (dinner) (present) (not (garbage))

 Actions:
 Cook :precondition (cleanHands)

 :effect (dinner)

 Wrap :precondition (quiet)

 :effect (present)

 Carry :precondition

 :effect (and (not (garbage)) (not (cleanHands))

 Dolly :precondition

 :effect (and (not (garbage)) (not (quiet)))

Dinner Date example

Dinner Date example

Dinner Date example

Rocket domain

Planning Graph Example

Rocket problem

OPPA European Social Fund
Prague & EU: We invest in your future.

