
Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Automated (AI) Planning
Planning as Plan-Space Search

Carmel Domshlak



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

State Space Search

So far we have considered planning as
search in state space

forward - build a plan in the same order that it is executed
backward - build a plan in the reverse order of its execution
temporal undirected - unordered commitments on
executing actions in time



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

State Space Search

Potential problem:
Spending lots of time on trying the same set of actions in
different orderings before realizing that there is no solution
(with this set)

Easier to see in FS/BS, and a bit harder to see in TUS.

Key observation: When we choose what to do, we also
choose when to do



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Searching in the Space of Plans

In 1974, Earl Sacerdoti built a planner, called NOAH, that
considered planning as search through plan space

Search states (nodes) = partially specified plans
Transitions (edges) = plan refinement operations
Initial state = null plan
Goal states = valid plans for the problems



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

State Space vs. Plan Space

Search through plan space ... hmm ... what is plan?

Answer I: Totally ordered sequence of either actions
or meta-actions

But then search through state space is isomorphic to
search through plan space!
Hmmm . . . the nature of the space being searched is in the
eye of the beholder ...
So what is the point of introducing “search through plan
space”??

Answer II: Partially ordered sequence of actions



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

State Space vs. Plan Space

Search through plan space ... hmm ... what is plan?

Answer I: Totally ordered sequence of either actions
or meta-actions

But then search through state space is isomorphic to
search through plan space!
Hmmm . . . the nature of the space being searched is in the
eye of the beholder ...
So what is the point of introducing “search through plan
space”??

Answer II: Partially ordered sequence of actions



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Least Commitment Planning

Think how you might solve a planning problem of ...
going for a vacation to Italy

1 Need to purchase plane tickets

2 Need to buy a “Lonely Planet” guide to Italy

BUT there is no need to decide (yet) which purchase should be
done first



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Least Commitment Planning

Think how you might solve a planning problem of ...
going for a vacation to Italy

1 Need to purchase plane tickets

2 Need to buy a “Lonely Planet” guide to Italy

BUT there is no need to decide (yet) which purchase should be
done first

Least Commitment Planning

Represent plans in a flexible way that enables deferring
decisions

At the planning phase, only the essential ordering
decisions are recorded



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Partial-Order Plans

Given a Strips task Π = (P,A, I,G) we search through a
space of hypothetical partial-order plans

A plan (= search node) is a triplet: 〈A,O,L〉 in which

A is a set of actions from A, possibly with (labeled)
repetitions
O is a set of ordering constraints over A
L is a set of causal links (a bit later)

Example: A = {a1, a2, a3}, O = {a1 < a3, a2 < a3}

Observe: Planner (eventually) must do constraint
satisfaction to ensure the consistency of O.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Causal Links

A key aspect of least commitment planning is to keep track of
past decisions and the reasons for those decisions

If you purchase plane tickets, then make sure bring them
to the airport

If another goal causes you to drop the tickets (e.g., having
you hands free to open the taxi door), then you should be
sure to pick them up again.

A good way to reason about (and act for) non-interference
between different actions introduced to the plan is to
record dependencies between actions explicitly

Causal links ap
q−→ ac records our decision to use ap to

produce the precondition q of ac



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Causal Links

A key aspect of least commitment planning is to keep track of
past decisions and the reasons for those decisions

If you purchase plane tickets, then make sure bring them
to the airport

If another goal causes you to drop the tickets (e.g., having
you hands free to open the taxi door), then you should be
sure to pick them up again.

A good way to reason about (and act for) non-interference
between different actions introduced to the plan is to
record dependencies between actions explicitly

Causal links ap
q−→ ac records our decision to use ap to

produce the precondition q of ac



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Threats

Causal links are used to detect when a newly introduced
action interferes with past decisions.

Such an action is called a threat

Suppose that

ap
q−→ ac is a causal link in L (of some plan 〈A,O,L〉), and

at is yet another action in A

We say that at threatens ap
q−→ ac if

O ∪ {ap < at < ac} is consistent, and
q ∈ del(at)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Eliminating Threats

When a plan contains a threat, then it is possible that the
plan would not work as anticipated.

Which means what?

Solution: identify threats and take evasive
countermeasures

promotion by O ∪= {at > ac}
demotion by O ∪= {at < ap}
. . .



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Planning Problems as Null Plans

Uniformity is the key for simplicity

Can use the same structure to represent both the planning
problem and complete plans

Planning problem as a null plan 〈A,O,L〉 where
A = {a0, a∞}, O = {a0 < a∞}, L = {}
pre(a0) = {}, del(a0) = {}, add(a0) = I
pre(a∞) = G, del(a0) = {}, add(a0) = {}



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm
Schematic description

Regressive algorithm that searches plan-space

Starts with the null plan

Makes non-deterministic plan refinement choices until

all preconditions of all actions in the plan have been
supported by causal links, and

all threatened causal links have been protected from
possible interference



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm
Input and Output

Recursive calls to POP with POP (〈A,O,L〉, agenda, A)
where

〈A,O,L〉 is a plan structure

agenda is a list of “open goals” that need to be supported
by causal links

A is the action set of our Strips problem

Initial call is with

null plan 〈{a0, a∞}, {a0 < a∞}, {}〉, and

agenda = {(g, a∞) | g ∈ pre(a∞) ≡ G}

If 〈A,O,L〉 is outputted by POP , then any total ordering of
actions A consistent with O is a valid plan for our problem.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm

POP (〈A,O,L〉, agenda, A)
Termination: if agenda = ∅ then return 〈A,O,L〉
Goal selection: choose (q, aneed) ∈ agenda



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm

POP (〈A,O,L〉, agenda, A)
Termination: if agenda = ∅ then return 〈A,O,L〉
Goal selection: choose (q, aneed) ∈ agenda
Action selection:

choose action aadd (either from A, or from A) such that

q ∈ add(aadd), and
O ∪ {aadd < aneed} is consistent

if no such action then return FALSE
otherwise

L ∪= {aadd
q−→ aneed} and O ∪= {aadd < aneed}

if aadd is a new action instance then A ∪= {aadd}, and
O ∪= {a0 < aadd < a∞}



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm

POP (〈A,O,L〉, agenda, A)
Termination: if agenda = ∅ then return 〈A,O,L〉
Goal selection: choose (q, aneed) ∈ agenda
Action selection:

choose action aadd (either from A, or from A) such that

q ∈ add(aadd), and
O ∪ {aadd < aneed} is consistent

if no such action then return FALSE
otherwise

L ∪= {aadd
q−→ aneed} and O ∪= {aadd < aneed}

if aadd is a new action instance then A ∪= {aadd}, and
O ∪= {a0 < aadd < a∞}

Update goal set:

agenda \= {(q, aneed)}
if aadd was a new action instance then

agenda ∪= {(r, aadd) | r ∈ pre(aadd)}



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm

POP (〈A,O,L〉, agenda, A)
Termination: if agenda = ∅ then return 〈A,O,L〉
Goal selection: choose (q, aneed) ∈ agenda
Action selection: choose and process aadd . . .

Update goal set: add preconditions of aadd to the agenda
...

Causal link protection: foreach causal link

{ap
r−→ ac} ∈ L, and at that is threatening it

choose either O ∪= {at > ac}, or O ∪= {at < ap}
if neither constraint is consistent then return FALSE



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

The POP Algorithm

POP (〈A,O,L〉, agenda, A)
Termination: if agenda = ∅ then return 〈A,O,L〉
Goal selection: choose (q, aneed) ∈ agenda
Action selection: choose and process aadd . . .

Update goal set: add preconditions of aadd to the agenda
...

Causal link protection: foreach causal link

{ap
r−→ ac} ∈ L, and at that is threatening it

choose either O ∪= {at > ac}, or O ∪= {at < ap}
if neither constraint is consistent then return FALSE

Recursive invocation: POP (〈A,O,L〉, agenda, A)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Choice Points

Three choice points

Goal selection

Action selection

Causal link protection

How crucial these choices are?

Affect soundness?

Affect completeness?

Affect efficiency?



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 1

Initial call to POP with

Null Plan (see the right figure)

agenda = {(onAB, a∞) , (onBC, a∞)}

First choice is goal selection

Affects efficiency, but not completeness!



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 2

Suppose (onBC, a∞) is selected (i.e., aneed = a∞)
Need to choose an action aadd that will provide onBC

This is a real non-deterministic choice!

Suppose that an oracle suggests making aadd be a new instance
of the action move-B-from-Table-to-C

a causal link aadd
onBC−−−→ a∞ is added to L

agenda is properly updated (how exactly?)
no threats to resolve . . . recursive call



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 2

Suppose (onBC, a∞) is selected (i.e., aneed = a∞)
Need to choose an action aadd that will provide onBC

This is a real non-deterministic choice!

Suppose that an oracle suggests making aadd be a new instance
of the action move-B-from-Table-to-C

a causal link aadd
onBC−−−→ a∞ is added to L

agenda is properly updated (how exactly?)
no threats to resolve . . . recursive call



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 2

Suppose that an oracle suggests making aadd be a new instance
of the action move-B-from-Table-to-C

a causal link aadd
onBC−−−→ a∞ is added to L

agenda is properly updated (how exactly?)

no threats to resolve . . . recursive call



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 3

Suppose (clearB,move-B-from-Table-to-C) is selected
Oracle suggests to reuse an existing action instance a0

add a causal link a0
clearB−−−−→ move-B-from-Table-to-C

agenda is properly updated (how exactly?)
no threats to resolve . . . recursive call



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 4a

Suppose (onAB, a∞) is selected
Oracle suggests making aadd be a new instance of the
action move-A-from-Table-to-B, and we do that ...
... BUT this time we have a threat!

move-A-from-Table-to-B and
move-B-from-Table-to-C have no constraints on their
relative ordering
move-A-from-Table-to-B deletes clearB that is required
by move-B-from-Table-to-C



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Step 4b

Try to protect the causal link

a0
clearB−−−−→ move-B-from-Table-to-C

In general, there are two options — promotion and
demotion — and this is a true non-deterministic choice!

In our example, demotion is inconsistent (why?), but
promotion is OK



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Next steps

What is now on the agenda? . . . in A? . . . in L? . . . in O?

Next steps follow the same lines of reasoning



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Example - Next steps

Eventually POP returns

Blackboard: Is it a correct partial order plan?



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Advantages

Natural extension to planning with partially instantiated
actions

... add action instance move-A-from-x?-to-B

... postpone unifying ?x with a concrete object until
necessary

Natural extensions to more complex action formalisms

... action durations

... delayed effects

...

Least commitment may lead to shorter search times

Mainly due to smaller branching factor



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

POP algorithm

Discussion

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Disadvantages

Significantly more complex algorithm

... higher per-node cost

Hard to determine what is true in a state

... harder to devise informed heuristics
(for all three types of choices)
... how to prune infinitely long paths??



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Framework: Temporal POCL planning

Temporal planning problem

Π = 〈P,A, I,G〉 where

P is a set of atoms,
I ⊆ P is the initial state,
G ⊆ P is the goal,
A is the set of actions,
each with pre(a), add(a), and del(a), and duration
dur(a).

Two ‘dummy’ actions: Start produces I, End requires G.

Two actions a and b interfere when

[pre(a) ∪ add(a)] ∩ del(b) 6= ∅ or
[pre(b) ∪ add(b)] ∩ del(a) 6= ∅



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Framework: Temporal POCL planning

Applicability of an action: pre(a) ⊆ s

Action application: [s− del(a)] ∪ add(a)

Goal state: G ⊆ s

Solution plan: set ρ of couples 〈ai, ti〉, i = 1, . . . , n st:

ai ∈ A and ti starting time of the application of a
∀〈ai, ti〉 ∈ ρ, pre(ai) true at time ti
∀g ∈ G, g true at time max〈ai,ti〉∈ρ[ti + dur(ai)]
∀〈ai, ti〉, 〈aj , tj〉 ∈ ρ, if ai and aj interfere,
then they do not overlap.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Framework: Temporal POCL planning

Applicability of an action: pre(a) ⊆ s

Action application: [s− del(a)] ∪ add(a)

Goal state: G ⊆ s

Solution plan: set ρ of couples 〈ai, ti〉, i = 1, . . . , n st:

ai ∈ A and ti starting time of the application of a
∀〈ai, ti〉 ∈ ρ, pre(ai) true at time ti
∀g ∈ G, g true at time max〈ai,ti〉∈ρ[ti + dur(ai)]
∀〈ai, ti〉, 〈aj , tj〉 ∈ ρ, if ai and aj interfere,
then they do not overlap.

Goal

Develop an optimal temporal planner with good performance



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Optimal planning is branching and pruning

Branching is used for expanding partial solutions

Pruning is used for discarding them

Optimal state-based planners:

Branch by performing state progression or regression

Prune by comparing the estimated cost of the partial plan
with a given bound

Optimal SAT and CSP planners:

Branch by picking a variable and trying each of its values

Prune by backtracking over inconsistencies due to encoded
bounds



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Pruning: A key feature of modern planners

In heuristic search planners achieved by use of lower
bounds or admissible heuristics

In SAT and CSP approaches achieved by adding the goal
at a fixed bound and performing constraint propagation

Both ideas combined in SAT/CSP formulations obtained
from planning graph (that contains lower bounds)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

POCL: Smart but blind branching scheme

POCL branching main loop:

Find and repair a ”flaw” till not possible (and then
backtrack) or done

Flaws: open conditions, threats, . . .

Benefit: easy to extend to temporal planning

Problem: weak pruning mechanism; detects very late that
partial plan is not good



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Benefit POCL branching: Easy to add time

Partial ordering a < a′ over actions replaced by temporal
precedence constraint T (a) + dur(a) <= T (a′)

Consistency over resulting Simple Temporal Problem easy
to enforce by bounds consistency:

Iterate over

Tmax(a) := min[Tmax(a), Tmax(a′)− dur(a)]

Tmin(a′) := max[Tmin(a′), Tmin(a) + dur(a)]

until fixed-point or some empty variable domain

Expressive planners based on this formulation are IxTeT,
RAX. . .



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Problem POCL planning: Weak pruning

Backtrack when partial plan or STP inconsistent.

 Need to detect “bad partial plans” earlier

Example: tower-n problems

Initial state: N blocks bi lie on the table

Goal: ∀i ∈ [1, . . . , N − 1], on(bi, bi+1)

One partial plan:

〈stack(bi+1, bi+2), t〉, 〈stack(bi, bi+1), t+ 2〉

Open condition for 〈stack(bi, bi+1), t+ 2〉:

〈holding(bi), t+ 2〉



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Problem POCL planning: Weak pruning

Possible repairs:

〈pickup(bi), t+ 1〉

=⇒ 1 good choice: can lead to a solution

〈pick(bi, bj), t+ 1〉, for all j ∈ [1..N ], i 6= j

=⇒ N-1 bad choices: backtrack (later) because
do not lead to optimal solutions

Recent attempts (RePop, VHPOP) for guiding search but no
optimality guarantees

Proposed approach

Solves tower-n problems optimally and backtrack free



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

CPT: Temporal POCL with strong pruning

POCL branching over time: STP + bounds consistency

Strong pruning: representing and reasoning about all
possible actions in the domain, not only those already
commited in the plan

Canonicity restriction: no action executed more than once
in the plan (this restriction can be eliminated)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Constraint Programming formulation

1 Variables

2 Domain preprocessing

3 Constraints

4 Branching scheme and heuristic



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Variables

For all action a ∈ A and all p ∈ pre(a):

T (a) :: [0,∞] = starting time of a

S(p, a) :: {a′ ∈ A|p ∈ add(a′)} = support of p for a

T (p, a) :: [0,∞] = starting time of support S(p, a)

InP lan(a) :: [0, 1] = presence of a in the plan



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Preprocessing: Lower bounds by some hT

Use some backward heuristic hT that is
admissible for makespan

Simple example: hmax
T

hmax(s) =

8><>:
0, s ⊆ I
mina∈A,p∈add(a) 1 + hmax(pre(a)), |s| = {p}
maxp∈s h

max({p}), |s| > 1

hmax
T (s) =

8><>:
0, s ⊆ I
mina∈A,p∈add(a) dur(a) + hmax

T (pre(a)), |s| = {p}
maxp∈s h

max
T ({p}), |s| > 1



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Preprocessing (I)

Initial lower bounds: Tmin(a) = hT (a)

Structural mutexes: pairs of atoms p, q for which
hT ({p, q}) =∞

e-deleters: extended deletes computed from structural
mutexes
action a e-deletes p if

a deletes p, or
q ∈ add(a) ∧ hT ({p, q}) =∞, or
q ∈ pre(a) ∧ hT ({p, q}) =∞∧ p 6∈ add(a)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Preprocessing (II)

Distances:

dist(a, a′) = hT (a′) with I = P \ edel(a)
dist(Start, a) = hT (a)
dist(a,End):
shortest-path algorithm on a ‘relevance graph’

nodes actions A
edges {a→ a′ | add(a′) ∩ pre(a) 6= ∅}

edge cost of a→ a′ is δ(a′, a) = dur(a′) + dist(a′, a)
source node End

dist(a,End) := spath(End, a)− dur(a)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Constraints

Bounds:

T (Start) + dist(Start, a) ≤ T (a)

T (a) + dist(a,End) ≤ T (End)

Preconditions:
supporter a′ of precondition p of a must precede a:

T (a) ≥ min
a′∈D[S(p,a)]

[T (a′) + δ(a′, a)]

T (a′) + δ(a′, a) > T (a)→ S(p, a) 6= a′



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Constraints

Causal Link Constraints: for all a ∈ A, p ∈ pre(a) and a′

that e-deletes p, a′ precedes S(p, a) or follows a:

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

∨ T (a) + δ(a, a′) ≤ T (a′)

Mutex Constraints: for effect-interfering a and a′

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Constraints

Support Constraints: T (p, a) and S(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

T (p, a) 6= T (a′)→ S(p, a) 6= a′



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Branching

A Support Threat 〈a′, S(p, a)〉 generates the split

[T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a);

T (a) + δ(a, a′) ≤ T (a′)]

An Open Condition S(p, a) generates the split

[S(p, a) = a′;S(p, a) 6= a′]

A Mutex Threat 〈a, a′〉 generates the split

[T (a) + δ(a, a′) ≤ T (a′);T (a′) + δ(a′, a) ≤ T (a)]



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Heuristics

Support Threats 〈a′, S(p, a)〉 with minimum slack
max[slack(a′ ≺ S(p, a)), slack(a ≺ a′)] selected first,
where

slack(a ≺ a′) = Tmax(a′)− (Tmin(a) + δ(a, a′))

slack(a′ ≺ S(p, a)) = Tmax(p, a)− (Tmin(a′) + min
a′∈D[S(p,a)]

δ(a′, a))

Open conditions S(p, a) selected latest first; i.e.
maximizing the expression mina′∈D[S(p,a)] Tmin(a′),
splitting on the ‘arg min’ action a′.

Mutex Threats 〈a, a′〉 selected as they are encountered



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Implementation

Constraint programming tools offer:

Predefined global constraints,

Efficient procedures for maintaining consistency,

Extensibility for designing new constraints, new heuristics,
and controlling the search,

Built-in search algorithms such as branch-and-bound.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Additional scheduling technique: Mutex sets

Based on scheduling technique edge-finding:

A mutex set is a set M of actions in the plan, such that
any two actions in M are interfering.

The time window associated with the set of actions M ,
maxa∈M (Tmax(a) + dur(a))−mina∈M Tmin(a), must
provide enough ‘room’ for scheduling all actions in a ∈M
in sequence.

Lower bound ∆(M) for the time needed for scheduling all
actions in M is given by∑
a∈M

[dur(a) + min
a′∈M |a′ 6=a

dist(a, a′)]− max
{a,a′}⊆M

dist(a, a′)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

tower-n domain

Problem CPU time (sec.) Makespan
CPT BBOX IPP TP4

tower-8 0.33 2.95 0.05 17.68 14
tower-9 0.64 7.28 0.11 887.7 16

tower-10 1.01 13.6 0.38 - 18
tower-11 1.69 28.2 2.26 - 20
tower-12 3.61 - 15.35 - 22
tower-13 5.83 - 123.78 - 24
tower-14 9.70 - - - 26
tower-15 13.65 - - - 28



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Temporal domains

Temporal CPU time (sec.) (# states) Makespan
problems CPT TP4

zeno1 0.06 (2) 0.05 (4) 173
zeno2 0.95 (892) 1.23 (17124) 592
zeno3 0.50 (4) 0.05 (618) 280
zeno4 4.59 (2233) - 522
zeno5 3.83 (124) 34.78 (595988) 400
zeno6 1.78 (54) 6.03 (116715) 323
zeno7 77.58 (45187) - 665
zeno8 265.93 (78044) - 522
zeno9 1522.24 (432210) - 522

zeno10 82.62 (12692) - 453
zeno11 116.15 (874) - 423



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Temporal domains

Temporal CPU time (sec.) (# states) Makespan
problems CPT TP4

driver1 0.06 (6) 0.05 (49) 91
driver2 734.98 (724327) 458.19 (17444608) 92
driver3 0.12 (11) 0.05 (621) 40
driver4 91.32 (54350) - 52
driver5 0.40 (152) - 51
driver6 111.10 (59702) - 52
driver7 0.59 (103) 20.79 (323963) 40
driver8 - - -
driver9 493.91 (137716) - 92

driver10 8.75 (1517) - 38



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Temporal domains

Temporal CPU time (sec.) (# states) Makespan
problems CPT TP4

satellite1 0.05 (5) 0.05 (80) 46
satellite2 0.95 (1435) 8.45 (712294) 70
satellite3 0.20 (26) 0.05 (21143) 34
satellite4 4.36 (5257) - 58
satellite5 2.32 (1191) - 36
satellite6 0.82 (47) - 46
satellite7 2.36 (325) - 34
satellite8 3324.92 (827408) - 46
satellite9 8.84 (516) - 34

satellite10 2160.24 (261474) - 43



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Temporal domains

Problems CPU time (sec.) Makespan
LPGP CPT LPGP CPT

zeno4 65.32 4.59 740 522
zeno5 43.83 3.83 583 400
zeno6 57.61 1.78 350 323

driver1 0.33 0.06 91 91
rover1 0.30 0.12 55 53

rover2 0.24 0.07 44 43
rover3 0.44 0.11 58 53
rover4 0.40 0.09 47 45

satellite1 0.17 0.05 46 41
satellite2 24.15 0.95 70 65
satellite3 62.22 0.20 34 29



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Parallel domains

Problems CPU time (sec.) Makespan
CPT BBOX IPP TP4

bw.12step 0.21 0.26 0.03 0.08 12
bw.large.a 0.44 1.13 0.07 0.08 12
bw.large.b 1.75 17.94 2.33 - 18
bw.large.c 231.22 - - - 28

rocket.a 0.28 0.38 7.97 44.20 7
rocket.b 0.24 0.45 11.95 31.83 7

log.a 0.70 0.47 781.13 - 11
log.b 0.90 0.91 2099.89 - 13
log.c 1.43 1.46 - - 13
log.d 29.03 3.73 - - 14



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Parallel domains

Problems CPU time (sec.) Makespan

CPT BBOX IPP TP4

zeno7 0.84 0.67 0.05 1.76 6

zeno8 5.39 1.59 0.22 166.22 5

zeno9 6.41 2.54 0.68 - 6

zeno10 6.84 4.01 221.32 - 6

zeno11 14.90 5.60 31.06 - 6

zeno12 16.39 11.10 - - 6

zeno13 45.97 11.42 - - 7

driver7 0.24 0.24 0.15 22.98 6

driver8 0.30 0.40 3.53 33.59 7

driver9 1.46 1.55 11.26 2979.66 10

driver10 1.02 1.00 17.06 1823.16 7

driver11 4.33 2.67 2.26 1259.06 9



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Parallel domains

Problems CPU time (sec.) Makespan
CPT BBOX IPP TP4

satellite3 0.12 0.26 0.03 0.08 6
satellite4 0.40 1.39 7.28 755.08 10
satellite5 0.99 1.50 145.67 - 7
satellite6 0.56 1.34 90.46 - 8
satellite7 1.55 1.80 1039.23 - 6
satellite8 101.18 235.13 - - 8
satellite9 8.52 4.68 - - 6

satellite10 185.90 42.35 - - 8
satellite11 22.51 - - - 8



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Non-canonical planning with CPT

The current version of CPT finds non-canonical plans.

Key ideas:

Distinguish action types from action tokens

Tokens are generated dynamically from action types

Implementation:

Emulates domain that contains an infinite supply of tokens

Variables associated with such tokens are identical until a
token becomes part of the plan



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Temporal
planning

Pruning

CSP

Branching

Some results

Privileging
Inference

Summary

Optimal temporal planner with performance that
approaches best parallel planners over domains with
uniform durations

Combines POCL temporal branching scheme with strong
pruning mechanisms based on the use of a variety of
constraints and existing lower bounds



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Optimal, Suboptimal and Easy planning

Optimal planning: minimizes plan makespan.

Examples: GRAPHPLAN, IPP, SATPLAN, GP-CSP, TP4,
CPT...

Suboptimal planning: no guarantee on plan quality, tries
to minimize the number of actions in the plan.

Examples: HSP, FF, LPG, SAPA...

Easy planning: same as suboptimal planning, with the
objective of privilegiate inferences over search.

Example: eCPT.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Goal

Temporal planner for easy planning that solves as much
problems as possible without search.

Without search means:

Avoid backtracks,

Privilegiate inferences over search,

Add only polynomial operations,

Analyse the results from the point of view of general
behavior (backtracks, ...) instead of running time.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Difficulty of easy planning

Very few planners perform inferences, some examples are
SATPLAN, GP-CSP and CPT.

To render them “easy”: increase the lower bound on the
makespan (the horizon).

Two problems appear:

1 The size of the encodings based on one variable per time
unit increases too much,

2 Constraints that require the validity of the goals at the
horizon loose their pruning power.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Extensions of CPT for “easy planning”

A combination of simple ideas, obtained from the observation
and analysis of the behavior (backtracks, ...) in various
problems.

Impossible supports

Unique supports

Distance boosting

Qualitatives precedences

Actions landmarks

Branching and heuristics



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Impossible supports

Supports elimination by preprocessing.

Example:

unstack(A,B) has handempty as precondition

putdown(A) adds handempty so

putdown(A) ∈ D[S(handempty, unstack(A,B))]

=⇒ but: putdown(A) e-deletes on(A,B), precondition of
unstack(A,B)

=⇒ furthermore: on(A,B) cannot be re-established without
deleting handempty



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Impossible supports

For each variable S(p, a) and each value a′ ∈ D[S(p, a)]:
let I ′ = P \ edel(a′)
let A′ = A \ {a ∈ A|p ∈ add(a) ∪ del(a)}
reachability analysis with I ′ and A′

=⇒ if a precondition of a is not reachable: S(p, a) 6= a′



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Unique supports

Pruning rule used during constraint propagation.

Example:

unstack(A,B) and pickup(C) have handempty as
precondition and delete,

they cannot be applied in parallel,

after the application of one of them, handempty is
deleted.

=⇒ the action that supports handempty for the first cannot
support handempty for the second.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Unique supports

An action a consumes an atom p when

p ∈ pre(a) ∩ del(a)

For two actions a and a′ that consumes the same atom p,
the following constraint is added:

S(p, a) 6= S(p, a′)



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Distance boosting

Increases distances and prunes supports by preprocessing.

Example:

The distance between putdown(A) and pickup(A) is
equal to 0.

=⇒ However, applying putdown(A) then pickup(A) is
useful only if an action inserted between them uses an
effect of putdown(A), for example if A is on a block B
that we want to move.

Similarly, the distance between pickup(A) and
putdown(A) is equal to 0.

=⇒ But: no action can be inserted between them that
uses an effect of pickup(A).



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Distance boosting

An action a cancels an action a′ when

All atoms added by a′ are e-deleted by a,

All atoms added by a are preconditions of a′.

For an action a that cancels an action a′ ∈ D[S(p, a)]:
If all actions that use an add effect of a′ e-delete p:
S(p, a) 6= a′.

Else: dist(a′, a) becomes minb[dist(a′, b) + dist(b, a)]
with b 6= a and b 6= a′, such that

either b uses an add effect of a′ but does not e-delete p,
or b adds p.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Qualitative precedences

CPT reasons with temporal precedences of the form
T (a) + δ(a, a′) ≤ T (a′) instead of qualitative precedences.

=⇒ Problem: they does not capture transitivity.

For exemple: from a < b and b < c, CPT does not infer a < c.

the initial domain of variables a, b, and c is [1, . . . , 100],
by bounds consistency:

a :: [1, . . . , 98], b :: [2, . . . , 99], c :: [3, . . . , 100]

=⇒ does not make a < c true for every combination of values



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Qualitative precedences

When a temporal precedence is made true: a qualitative
precedence is recorded. For a ≺ a′, the transitive closure is
computed:

if InP lan(a) = 1: ∀a′′ st a′′ ≺ a, a′′ ≺ a′ is inferred

if InP lan(a′) = 1: ∀a′′ st a′ ≺ a′′, a ≺ a′′ is inferred

Inference rules using these qualitative precedences:

for an action a′ ∈ D[S(p, a)]:

if InP lan(a′) = 1 and a ≺ a′ then S(p, a) 6= a′

for an action a′ ∈ D[S(p, a)] and an action b that
e-deletes p:

if InP lan(b) = 1, a′ ≺ b and b ≺ a, then S(p, a) 6= a′



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Landmark actions

By preprocessing: we can find some actions that must belong
to any solution plan.

For example:

a block A must be moved,

A is under B, itself under C.

=⇒ unstack(C,B) and unstack(B,A) must be used in any
solution plan, and unstack(C,B) ≺ unstack(B,A).

An action a is a landmark if a goal of the problem is not
reachable when a is exluded from the domain.

An action landmark a precedes an action landmark b, if b
is not reachable when the action a is excluded.



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Branching and heuristics

Support threats 〈a′, S(p, a)〉:
1 to minimize Tmin(a)
2 to minimize Tmax(p, a)
3 to minimize max[slack(a′ ≺ S(p, a)), slack(a ≺ a′)]

where:
slack(a, a′) = Tmax(a′)− [Tmin(a) + δ(a, a′)]
slack(a′, S(p, a)) =
Tmax(p, a)− [Tmin(a′) + mina′∈D[S(p,a)] δ(a′, a)]

Open conditions S(p, a):

1 to minimize Tmax(p, a)
2 to minimize slack(a′, a) = Tmax(a)− (Tmin(a′) + δ(a′, a))

where a′ produces p for a (a′ ∈ D[S(p, a)]), minimizing
Tmin(a′).



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Results on various domains

eCPT FF
#pbs solved no bkt. (max bkt.) max nds solved max nds

blocks 50 50 50 (0) 275 42 146624
depots 20 18 16 (4) 285 19 166141
driver 20 17 16 (5) 176 15 4657
ferry 50 50 50 (0) 1176 50 201
gripper 50 50 50 (0) 201 50 200
logistics 50 50 50 (0) 273 50 2088
miconic 50 50 50 (0) 131 50 76
rovers 20 20 20 (0) 207 20 3072
satellite 20 20 20 (0) 249 20 5889
zeno 20 14 14 (0) 70 20 933



Automated
(AI) Planning

From
state-space to
plan-space
search

Least
Commitment
Planning

Meeting
POCL and
Planning-as-
CSP

Privileging
Inference

Discussion

Unexpected results: a few simple inference rules are
sufficient to avoid backtracks in many benchmarks.

Interest of the CP+POCL formulation: it has permitted
the fine-grained analysis of backtracks and finding new
rules.

Inferences have a cost: actually, methods that privilegiate
search are more efficient.

Robustness improvement: in the domains studied, we
almost sure get a solution in reasonable time.


	From state-space to plan-space search
	Least Commitment Planning
	POP algorithm
	Discussion

	Meeting POCL and Planning-as-CSP
	Temporal planning
	Pruning
	CSP
	Branching
	Some results

	Privileging Inference

