
OPPA European Social Fund
Prague & EU: We invest in your future.

Programming Multi-Agent Systems in
AgentSpeak Using Jason

Published by John Wiley & Sons Ltd., October 2007.

http://jason.sf.net/jBook/

http://jason.sf.net/jBook/
http://jason.sf.net/jBook/

AgentSpeak

• Originally proposed by Rao [MAAMAW 1996]

• Programming language for BDI agents

• Elegant notation, based on logic programming

• Inspired by PRS (Georgeff & Lansky), dMARS (Kinny), and BDI Logics (Rao &
Georgeff)

• Abstract programming language aimed at theoretical results

Syntax of AgentSpeak

• The main language constructs of AgentSpeak are:

• Beliefs

• Goals

• Plans

• The architecture of an AgentSpeak agent has four main components:

• Belief Base

• Plan Library

• Set of Events

• Set of Intentions

Syntax of AgentSpeak (Beliefs and Goals)

• Beliefs represent the information available to an agent (e.g., about the
environment or other agents)

publisher(wiley)

• Goals represent states of affairs the agent wants to bring about (come to
believe, when goals are used declaratively)

• Achievement goals:

!write(book)

Or attempts to retrieve information from the belief base

• Test goals:

?publisher(P)

Syntax of AgentSpeak (Events and Plans)

• An agent reacts to events by executing plans

• Events happen as a consequence to changes in the agent’s beliefs or goals

• Plans are recipes for action, representing the agent’s know-how

• An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

• where:

• the triggering event denotes the events that the plan is meant to handle;

• the context represent the circumstances in which the plan can be used;

• the body is the course of action to be used to handle the event if the context is
believed true at the time a plan is being chosen to handle the event.

Syntax of AgentSpeak (Plans Cont.)

• AgentSpeak triggering events:

• +b (belief addition)

• -b (belief deletion)

• +!g (achievement-goal addition)

• -!g (achievement-goal deletion)

• +?g (test-goal addition)

• -?g (test-goal deletion)

• The context is logical expression, typically a conjunction of literals to be
checked whether they follow from the current state of the belief base

• The body is a sequence of actions and (sub) goals to achieve.

• NB: This is the original AgentSpeak syntax; Jason allows other things in the
context and body of plans.

AgentSpeak Plans

+green_patch(Rock)
 : not battery_charge(low)
 <- ?location(Rock,Coordinates);
 !at(Coordinates);
 !examine(Rock).

+!at(Coords)
 : not at(Coords)
 & safe_path(Coords)
 <- move_towards(Coords);
 !at(Coords).

+!at(Coords) ...

Jason

• Jason implements the operational semantics of a variant of AgentSpeak

• Various extensions aimed at a more practical programming language

• Platform for developing multi-agent systems

• Developed by Jomi F. Hübner and Rafael H. Bordini

• We’ll look at the Jason additions to AgentSpeak and its features

Jason Reasoning Cycle

S
I

Events
External

Event
Selected

S
E

Beliefs to
Add and

Delete

Relevant

Plans

New Plan
Push

Intention
Updated

O
S

Applicable

Plans

Means

Intended

Events
External

Plan

Library

Events

Internal
Events

3

checkMail

Intentions

Execute

Intention

...New

New

9

Belief

Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
S
M

Reasoning Cycle (Steps)

1. Perceiving the Environment

2. Updating the Belief Base

3. Receiving Communication from Other Agents

4. Selecting ‘Socially Acceptable’ Messages

5. Selecting an Event

Reasoning Cycle (Steps)

6. Retrieving all Relevant Plans

7. Determining the Applicable Plans

8. Selecting one Applicable Plan

9. Selecting an Intention for Further Execution

10. Executing one step of an Intention

10. IntentionExecution

a. Environment actions

b. Achievement goals

c. Test goals

d. Mental notes

e. Internal actions

f. Expressions

Belief Annotations

• Annotated predicate:

ps(t1,...,tn)[a1,...,am]

where ai are first order terms

• All predicates in the belief base have a special annotation source(si)
where si ∈ {self,percept} ∪ AgId

Example of Annotations

• An agent’s belief base with a user-defined doc annotation (degree of
certainty)

blue(box1)[source(ag1)].

red(box1)[source(percept)].

colourblind(ag1)[source(self),doc(0.7)].

lier(ag1)[source(self),doc(0.2)].

Plan Annotations

• Plan labels also can have annotations (e.g., to specify meta-leval information)

• Selection functions (Java) can use such information in plan/intention selection

• Possible to change those annotations dynamically (e.g., to update priorities)

• Annotations go in the plan label

Annotated Plan Example

@aPlan[
 chance_of_success(0.3),
 usual_payoff(0.9),
 any_other_property]
+!g(X)
 : c(t)
 <- a(X).

Strong Negation

• The operator ‘~’ is used for strong negation

+!leave(home)
 : not raining & not ~raining
 <- open(curtains); ...

+!leave(home)
 : not raining & not ~raining
 <- .send(mum,askOne,raining); ...

Belief-Base Rules

• Prolog-like rules in the belief base

likely_color(Obj,C)

 :- colour(Obj,C)[degOfCert(D1)]

 & not (

 colour(Obj,_)[degOfCert(D2)]

 & D2 > D1)

 & not ~colour(C,B).

Handling Plan Failure

• Goal-deletion events were syntactically defined, but no semantics

• We use them for a plan failure handling mechanism (probably not what they
were meant for)

• Handling plan failures is very important as agents are situated in dynamic
environments

• A form of “contingency plan”, possibly to “clean up” before attempting
another plan

Contingency Plan Example

• To create an agent that is blindly committed to goal g:

+!g : g <- true.

+!g : ... <- ... ?g.

...

-!g : true <- !g.

Internal Actions

• Unlike actions, internal actions do not change the environment

• Code to be executed as part of the agent reasoning cycle

• AgentSpeak is meant as a high-level language for the agent’s practical
reasoning

• Internal actions can be used for invoking legacy code elegantly

Internal Actions (Cont.)

• Libraries of user-defined interal actions

lib_name.action_name(...)

• Predefined internal actions have an empty library name

• Internal action for communication

.send(r,ilf,pc) where ilf ∈
{tell,untell,achieve,unachieve,
 askOne,askAll,askHow,
 tellHow,untellHow}

Internal Actions (Cont.)

• Examples of BDI-related internal actions:

• Many others available for: printing, sorting, list/string operations, manipulating
the beliefs/annotations/plan library, creating agents, waiting/generating
events, etc.

.desire(literal)

.intend(literal)

.drop_desires(literal)

.drop_intentions(literal)

A Jason Plan

+green_patch(Rock)

 : ~battery_charge(low)

 & .desire(at(_))

 <- .drop_desires(at(_));

 dip.get_coords(Rock, Coords);

 !at(Coords);

 !examine(Rock).

AgentSpeak X Prolog

• With the Jason extensions, nice separation of theoretical and practical
reasoning

• BDI arcthicture allows

• long-term goals (goal-based behaviour)

• reacting to changes in a dynamic environment

• handling multiple foci of attention (concurrency)

• Acting on an environment and a higher-level conception of a distributed
system

• Direct integration with Java

MAS Configuration File

• Simple way of defining a multi-agent system

MAS my_system {

 infrastructure: Jade

 environment: MyEnv

 ExecuctionControl: ...

 agents: ag1; ag2; ag3;

}

MAS Definition (Cont.)

• Infrastructure options: Centralised, Saci, Jade

• Easy to define the host where agents and the environment will run

• If the file name with the code is unusual

agents:
 ag1 at host1.dur.ac.uk;

agents: ag1 file1;

MAS Definition (Cont.)

• Multiple instances of an agent

• Interpreter configuration

• Configuration of event handling, frequency of perception, system messages,
user-defined settings, etc.

agents: ag1 #10;

agents: ag1 [conf=option];

Agent Customisation

• Users can customise the Agent class to define the selection functions, social
relations for communication, and belief update and revision

• selectMessage()

• selectEvent()

• selectOption()

• selectIntention()

• socAcc()

• buf()

• brf()

Overall Agent Architecture

• Users customise the AgentArch class to change the way the agent interacts
with the infrastrcuture: perception, action, and communication

• Helps switching between simulation for testing and real deployment

• perceive()

• act()

• sendMsg()

• broadcast()

• checkMail()

Belief Base Customisation

• Logical belief base might not be appropriate for large applications

• Jason has an alternative belief base combined with a database

• Users can create other customisations

• add()

• remove()

• contains()

• getRelevant()

Customised MAS

MAS Custom {

 agents:

 a1 agentClass MyAg

 agentArchClass MyAgArch

 beliefBaseClass Jason.bb.JDBCPersistentBB(
 "org.hsqldb.jdbcDriver",
 "jdbc:hsqldb:bookstore",
 ...
 "[count_exec(1,tablece)]");
}

Environments

• In actual deployment, there will normally be an environment where the agents
are situated

• As discussed earlier, the AgentArchitecture needs to be customised to get
perceptions and act on such environment

• We often want a simulated environment (e.g., to test a MAS application)

• This is done in Java by extending Jason’s Environment class and using
methods such as addPercept(String Agent, Literal Percept)

Jason for jEdit

Jason’s Mind Inspector

Jason is available
Open Source

under GNU LGPL at:

http://jason.sf.net

(kindly hosted by
SourceForge)

Jason
by Gustave Moreau (1865)

Oil on canvas, 204 x 115.5 cm.
Musée d'Orsay, Paris.

© Photo RMN. Photograph by
Hervé Lewandowski.

http://jason.sf.net
http://jason.sf.net

Rafael H. Bordini
Jomi Fred Hübner
Michael Wooldridge

W I L E Y S E R I E S I N A G E N T T E C H N O L O G Y

programming
multi-agent systems
in AgentSpeak

Jasonusing

OPPA European Social Fund
Prague & EU: We invest in your future.

