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Constraint Satisfaction Problem 

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables 
in X and their values from D, so that    (X,D)     {0,1} P !
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Multi-agent Constraint Satisfaction 

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables 
in X and their values from D, so that    (X,D)     {0,1} P !
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Example
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Example

x1:	  {a,	  b}

x2:	  {a,	  b} x3:	  {a,	  b}

x5:	  {a,	  b}

x4:	  {a,b,c}

6= 6=

6=6=
6=
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Multi-agent Constraint Satisfaction 

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables 
in X and their values from D, so that    (X,D)     {0,1} P !

Tuesday, November 27, 12



Multiagent Constraint Optimization 

the overall cost of the assignment is minimized
Cost ({v1, ..., v ) = 

C = represented as a list of cost functions on 1 ... n variables in 
X and their values from D, so that   (X,D)     R P !

X

8ci2C

ci({v1, . . . vn})
X
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ci({v1, . . . vn})
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Solving CSP
• Importance of CSP: large theory and tools for computing solutions
• 2 common methods:

– backtrack search: assign one variable at a time, backtrack when no 
assignment without satisfying constraints.

– local search: start with random assignment, make local changes to reduce 
number of constraint violations.
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Multiagent/Distributed CSP & COP
• Problem is distributed in a network of agents.
• Each variable belongs to one agent who is responsible for setting 

its value (typically these are connected to complex local 
subproblems).

• Constraints are known to all agents with variables in it.
• Distributed = parallel: distribution of variables to agents cannot be 

chosen to optimize performance.

• WHY? 
– Real world problems are distributed, no agreement on a common model.
– Costly to formalize constraints and preferences for all possible cases.
– No trusted third party, privacy concerns.
– but generally not efficiency!

9
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Multiagent/Distributed CSP & COP
• Top-down approaches:

– Pruning algorithms: used mainly as a preprocessing step
✴ Filtering, Hyper-resolution

– Search algorithms: 
✴ Chronological (Synchronous) Backtracking, 
✴ Asynchronous Backtracking, ADOPT

• Bottom-up approaches: 
✴ Distributed breakout
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Multiagent/Distributed CSP & COP
• Top-down approaches:

– Pruning algorithms: used mainly as a preprocessing step
✴ Filtering, Hyper-resolution

– Search algorithms: 
✴ Chronological (Synchronous) Backtracking, 

– A few agents are active, most are waiting
– Active agents take decisions with updated information
– Low degree of concurrency / poor robustness
– Algorithms: direct extensions of centralized ones

✴ Asynchronous Backtracking, ADOPT
– All agents are active simultaneously
– Information is less updated, obsolescence appears
– High degree of concurrency / robust approaches
– Algorithms: new approaches11
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Domain Pruning Algorithms
• Filtering algorithm:

– For each node xi repeatadly execute             with  with each neighbour

• Filtering terminates when no further elimination happens:
– The solution is found if there is one value for each variable only
– If there is an empty set assigned for one of the variables, -> no solution
– If there is non-singleton set for one variable, the result is nonconlusive 
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Domain Pruning Algorithms
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Filtering based on hyper-resolution
• Works with the concept of forbidden combinations: NOGOOD (NG)

– example:
• Unit resolution:

• Hyper-resolution:

21
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Filtering based on hyper-resolution
• Each agent repeatedly generates new constraints for his neighbors, 

notifies them of these new constraints, and prunes his own domain 
based on new constraints passed to him by his neighbors. 
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Filtering based on hyper-resolution
• As hyper-resolution is sound and complete for propositional logic it 

gave a rise to an efficient while complete distributed CSP algorithm. 
• The algorithm is guaranteed to converge in the sense that after 

sending and receiving a finite number of messages, each agent will 
stop sending messages and generating Nogoods. 
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Filtering based on hyper-resolution
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NOGOODS:

NOGOODS:

similarly:

Tuesday, November 27, 12



Chronological Backtracking
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Chronological Backtracking
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Towards optimization:
Synchronous branch-bounds

• Extend synchronous backtracking to optimization
– every constraint contributes a cost.
– upper bound = lowest cost of full assignment found so far.
– partial assignment extended while cost < upper bound.
– result = solution with lowest cost
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Improvements
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Improvements
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Performance metrics
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Asynchronous backtracking (ABT)
• Assumptions:

– Agents communicate by sending messages, agent send messages to others, 
iff it knows their identifiers (directed communication/no broadcasting)

– The delay transmitting a message is finite but random, for any pair of 
agents, messages are delivered in the order they were sent

– Agents know only the constraints in which they are involved
– Each agent owns a single variable, constraints are binary 
– Asynchronous algorithm: Agents work in parallel without synchronization.

✴ all agents active, take a value and inform
✴ no agent has to wait for other agents

– Global priority ordering among variables, and agents (to avoid cycles)
– Constraints are directed: from higher-priority to lower-priority agents

• ABT plays in asynchronous distributed context the same role as 
backtracking in centralized
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ABT: Core principles
• Higher priority agent (j) informs the lower one (k) of its assignment
• Lower priority agent (k) evaluates the constraint with its own 

assignment
– If permitted:  no action
– else:  look for a value consistent with j

✴ If it exists k takes that value
✴ else the agent view of k becomes a NOGOOD (constraint) & backtrack

• NOGOOD: conjunction of (variable, value) pairs of higher priority 
agents, which removes a value of the current one
– are required to ensure systematic traversal of search space in 

asynchronous, distributed context
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How ABT operates?
• ABT agents: asynchronous action; spontaneous assignment
• Assignment: j takes value a, j informs lower priority agents
• Backtrack: k has no consistent values with higher-priority agents, 

k resolves nogoods and sends a backtrack message
• New links: j receives a nogood mentioning i, unconnected with j; j 

asks i to set up a link
• Stop: “no solution” detected by an agent, stop
• Solution: when agents are silent for a while (quiescence), every 

constraint is satisfied => solution; detected by specialized 
algorithms   
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ABT Data Structures
• AgentView (current assignment context):

– values of higher-priority constrained agents
• NOGOOD store: each removed value has justifying NOGOOD

– stored NOGOOD must be active wrt to AgentView
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ABT message passing
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ABT message passing
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Example

37

Tuesday, November 27, 12



38

Example
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Example
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Example
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Example

x1:	  a

x2:	  a x3:	  a

x5:	  a

x4:	  a

6= 6=

6=6=
6=
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Example

x1:	  a

x2:	  a x3:	  a

x5:	  a

x4:	  a

6= 6=

6=6=
6=
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Example

x1:	  a

x2:	  b x3:	  b

x5:	  b

x4:	  b

6= 6=

6=6=
6=
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Example

x1:	  a

x2:	  b x3:	  a

x5:	  a

x4:	  b

6= 6=

6=6=
6=
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Example

x1:	  a

x2:	  b x3:	  a

x5:	  a

x4:	  b

6= 6=

6=6=
6=
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Example

x1:	  a

x2:	  b x3:	  a

x5:	  b

x4:	  c

6= 6=

6=6=
6=

Tuesday, November 27, 12



Example
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Example
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Example

52

Tuesday, November 27, 12



Example

53

Tuesday, November 27, 12



Example

54

Tuesday, November 27, 12



Example

55

Tuesday, November 27, 12


