
A4M33MAS - Multiagent Systems
Distributed Constraint Satisfaction

Michal Pechoucek & Michal Jakob
Department of Computer Science
Czech Technical University in Prague

In parts based on Multi-agent Constraint Programming, Boi Faltings, Laboratoire d’Intelligence Artificielle, EPFL

Tuesday, November 27, 12

Constraint Satisfaction Problem

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that (X,D) {0,1} P !

Tuesday, November 27, 12

Multi-agent Constraint Satisfaction

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that (X,D) {0,1} P !

Tuesday, November 27, 12

Example

Tuesday, November 27, 12

Example

x1:	 {a,	 b}

x2:	 {a,	 b} x3:	 {a,	 b}

x5:	 {a,	 b}

x4:	 {a,b,c}

6= 6=

6=6=
6=

Tuesday, November 27, 12

Multi-agent Constraint Satisfaction

= Assignment

C = represented as a list of Boolean predicate on 1 ... n variables
in X and their values from D, so that (X,D) {0,1} P !

Tuesday, November 27, 12

Multiagent Constraint Optimization

the overall cost of the assignment is minimized
Cost ({v1, ..., v) =

C = represented as a list of cost functions on 1 ... n variables in
X and their values from D, so that (X,D) R P !

X

8ci2C

ci({v1, . . . vn})
X

8ci2C

ci({v1, . . . vn})

Tuesday, November 27, 12

Solving CSP
• Importance of CSP: large theory and tools for computing solutions
• 2 common methods:

– backtrack search: assign one variable at a time, backtrack when no
assignment without satisfying constraints.

– local search: start with random assignment, make local changes to reduce
number of constraint violations.

8

Tuesday, November 27, 12

Multiagent/Distributed CSP & COP
• Problem is distributed in a network of agents.
• Each variable belongs to one agent who is responsible for setting

its value (typically these are connected to complex local
subproblems).

• Constraints are known to all agents with variables in it.
• Distributed = parallel: distribution of variables to agents cannot be

chosen to optimize performance.

• WHY?
– Real world problems are distributed, no agreement on a common model.
– Costly to formalize constraints and preferences for all possible cases.
– No trusted third party, privacy concerns.
– but generally not efficiency!

9

6=

Tuesday, November 27, 12

Multiagent/Distributed CSP & COP
• Top-down approaches:

– Pruning algorithms: used mainly as a preprocessing step
✴ Filtering, Hyper-resolution

– Search algorithms:
✴ Chronological (Synchronous) Backtracking,
✴ Asynchronous Backtracking, ADOPT

• Bottom-up approaches:
✴ Distributed breakout

10

Tuesday, November 27, 12

Multiagent/Distributed CSP & COP
• Top-down approaches:

– Pruning algorithms: used mainly as a preprocessing step
✴ Filtering, Hyper-resolution

– Search algorithms:
✴ Chronological (Synchronous) Backtracking,

– A few agents are active, most are waiting
– Active agents take decisions with updated information
– Low degree of concurrency / poor robustness
– Algorithms: direct extensions of centralized ones

✴ Asynchronous Backtracking, ADOPT
– All agents are active simultaneously
– Information is less updated, obsolescence appears
– High degree of concurrency / robust approaches
– Algorithms: new approaches11

Tuesday, November 27, 12

Domain Pruning Algorithms
• Filtering algorithm:

– For each node xi repeatadly execute with with each neighbour

• Filtering terminates when no further elimination happens:
– The solution is found if there is one value for each variable only
– If there is an empty set assigned for one of the variables, -> no solution
– If there is non-singleton set for one variable, the result is nonconlusive

12

Tuesday, November 27, 12

Domain Pruning Algorithms

13

Tuesday, November 27, 12

Domain Pruning Algorithms

14

Tuesday, November 27, 12

Domain Pruning Algorithms

15

Tuesday, November 27, 12

Domain Pruning Algorithms

16

Tuesday, November 27, 12

Domain Pruning Algorithms

17

Tuesday, November 27, 12

Domain Pruning Algorithms

18

Tuesday, November 27, 12

Domain Pruning Algorithms

19

Tuesday, November 27, 12

Domain Pruning Algorithms

20

Tuesday, November 27, 12

Filtering based on hyper-resolution
• Works with the concept of forbidden combinations: NOGOOD (NG)

– example:
• Unit resolution:

• Hyper-resolution:

21

Tuesday, November 27, 12

Filtering based on hyper-resolution
• Each agent repeatedly generates new constraints for his neighbors,

notifies them of these new constraints, and prunes his own domain
based on new constraints passed to him by his neighbors.

22

Tuesday, November 27, 12

Filtering based on hyper-resolution
• As hyper-resolution is sound and complete for propositional logic it

gave a rise to an efficient while complete distributed CSP algorithm.
• The algorithm is guaranteed to converge in the sense that after

sending and receiving a finite number of messages, each agent will
stop sending messages and generating Nogoods.

23

Tuesday, November 27, 12

Filtering based on hyper-resolution

24

NOGOODS:

NOGOODS:

similarly:

Tuesday, November 27, 12

Chronological Backtracking

25

Tuesday, November 27, 12

Chronological Backtracking

26

Tuesday, November 27, 12

Towards optimization:
Synchronous branch-bounds

• Extend synchronous backtracking to optimization
– every constraint contributes a cost.
– upper bound = lowest cost of full assignment found so far.
– partial assignment extended while cost < upper bound.
– result = solution with lowest cost

27

Tuesday, November 27, 12

Improvements

28

Tuesday, November 27, 12

Improvements

29

Tuesday, November 27, 12

Performance metrics

30

Tuesday, November 27, 12

Asynchronous backtracking (ABT)
• Assumptions:

– Agents communicate by sending messages, agent send messages to others,
iff it knows their identifiers (directed communication/no broadcasting)

– The delay transmitting a message is finite but random, for any pair of
agents, messages are delivered in the order they were sent

– Agents know only the constraints in which they are involved
– Each agent owns a single variable, constraints are binary
– Asynchronous algorithm: Agents work in parallel without synchronization.

✴ all agents active, take a value and inform
✴ no agent has to wait for other agents

– Global priority ordering among variables, and agents (to avoid cycles)
– Constraints are directed: from higher-priority to lower-priority agents

• ABT plays in asynchronous distributed context the same role as
backtracking in centralized

31

Tuesday, November 27, 12

ABT: Core principles
• Higher priority agent (j) informs the lower one (k) of its assignment
• Lower priority agent (k) evaluates the constraint with its own

assignment
– If permitted: no action
– else: look for a value consistent with j

✴ If it exists k takes that value
✴ else the agent view of k becomes a NOGOOD (constraint) & backtrack

• NOGOOD: conjunction of (variable, value) pairs of higher priority
agents, which removes a value of the current one
– are required to ensure systematic traversal of search space in

asynchronous, distributed context

32

Tuesday, November 27, 12

How ABT operates?
• ABT agents: asynchronous action; spontaneous assignment
• Assignment: j takes value a, j informs lower priority agents
• Backtrack: k has no consistent values with higher-priority agents,

k resolves nogoods and sends a backtrack message
• New links: j receives a nogood mentioning i, unconnected with j; j

asks i to set up a link
• Stop: “no solution” detected by an agent, stop
• Solution: when agents are silent for a while (quiescence), every

constraint is satisfied => solution; detected by specialized
algorithms

33

Tuesday, November 27, 12

ABT Data Structures
• AgentView (current assignment context):

– values of higher-priority constrained agents
• NOGOOD store: each removed value has justifying NOGOOD

– stored NOGOOD must be active wrt to AgentView

34

Tuesday, November 27, 12

ABT message passing

35

Tuesday, November 27, 12

ABT message passing

36

Tuesday, November 27, 12

Example

37

Tuesday, November 27, 12

38

Example

Tuesday, November 27, 12

39

Example

Tuesday, November 27, 12

40

Example

Tuesday, November 27, 12

41

Example

Tuesday, November 27, 12

42

Example

Tuesday, November 27, 12

43

Example

Tuesday, November 27, 12

Example

x1:	 a

x2:	 a x3:	 a

x5:	 a

x4:	 a

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

x1:	 a

x2:	 a x3:	 a

x5:	 a

x4:	 a

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

x1:	 a

x2:	 b x3:	 b

x5:	 b

x4:	 b

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

x1:	 a

x2:	 b x3:	 a

x5:	 a

x4:	 b

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

x1:	 a

x2:	 b x3:	 a

x5:	 a

x4:	 b

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

x1:	 a

x2:	 b x3:	 a

x5:	 b

x4:	 c

6= 6=

6=6=
6=

Tuesday, November 27, 12

Example

50

Tuesday, November 27, 12

Example

51

Tuesday, November 27, 12

Example

52

Tuesday, November 27, 12

Example

53

Tuesday, November 27, 12

Example

54

Tuesday, November 27, 12

Example

55

Tuesday, November 27, 12

