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1 Network flows

A number of practical problems dealing with combinatorial optimisation can be solved using
network flows. To be able to imagine the problem the network is a graph where each edge is a
pipe through which liquid flows. The goal is to find a flow (maximal, feasible, etc.) in the network
on condition that circulation loss is ignored.

Definition 1.1 Flow. Let G is a directed graph. Network flow is such an evaluation of edges that
each edge is weighted by real number f : E(G)→ R and each node satisfies Kirchhoff’s law [1]∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e) (1)

where E+(v) is a set of leaving edges from the node v and E−(v) is a set of entering edges to the
node v.

One of the most frequent problem dealing with network flows is the Minimum Cost Flow
Problem. The problem is formulated as follows. Let (G, b, l, u, c) is a transport network where G
is a directed graph, b is a vector of the source and sink nodes, matrices l and u determine lower
and upper bounds of edges, and vector c provides the cost per unit of flow for each edge. The goal
is to find the cheapest feasible flow such that for each node v ∈ V (G) the following is satisfied.∑

e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e) = b(v). (2)
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b(v1) = +4 b(v4) = −4(0, 2, 1)

Figure 1: An example of the network.
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2 Reconstruction of binary images using network flows

The aim of the exercise is to reconstruct a square binary image using projection data and network
flows [2, 3], i.e. each pixel has assigned a black or white colour (0 = black, 1 = white) according
to projections. This method, which is often used in medicine to reconstruct a three-dimensional
image from the projections scanned by a X-ray machine, will be explained by way of example.

Let’s have horizontal and vertical projections sumR (denoted as R) and sumC (denoted as C)
respectively. The i-th element of vector sumR is the sum of the pixel values in row i. In a similar
way, the j-th element of vector sumC is the sum of the pixel values in column j. The goal is to
reconstruct a binary image that is 3 by 3 pixels in size (see Figure 2).
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Figure 2: An example of the image which will be reconstructed.

In spite of using projections R and C the solution to the problem is ambiguous (see Figure 3).
In case of having additional projections (e.g. diagonal projections) the number of solutions can be
reduced, for example both images in Figure 3 have the same horizontal and vertical projections but
the diagonal projections (i.e. sumD and sumA) are different. However, not even four projections
are sufficient to ensure an accurate reconstruction of an arbitrary image. On the other hand, the
more projections you have the more precise reconstruction you get.

2 2 1
sumC

2

1

2

sumR

2 2 1
sumC

2

1

2

sumR

1
1
1
2
0

su
m
D

1
1
1
2
0

sum
A

0
2
2
1
0 1

2
0
1
1

sum
A

su
m
D

Figure 3: An illustration of the ambiguous solutions.

2.1 Transformation of the projections into network flows

Having given the horizontal and vertical projections a binary image can be reconstructed using
network flows, more precisely the Minimum Cost Flow Problem. An example of such network
graph and corresponding projections is shown in Figure 4. Nodes Ri and Cj correspond with the
projections R and C respectively. Each edge can be likened to the pixel at position (Ri, Cj) and
its maximal flow is limited to one since a reconstructed image is binary.

The above mentioned process can be used independently of an image size. Let n1×n2 is a size
of an image then the corresponding graph G has n1 source nodes Ri, and n2 sink nodes Cj .
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Figure 4: An example of network (G, b, l, u, c) that corresponds to projections R and C.

2.2 The algorithm for reconstructing binary images

Data: Projections R and C.
Result: Reconstructed image I.

I is n1 × n2 zero matrix;
cprev is (n1 + n2)× (n1 + n2) zero matrix;
create vector b and matrices l, u according to R, C;
for ic = 1 : countOfIterations do

c = fce(cprev, I);
cprev = c;
create empty graph G;
F is the solution of the Minimum Flow Cost Problem using network (G, b, l, u, c);
transform F into image I;
display image I;

end

Vector b is created by the following way.

>> b = [sumR -sumC]’;

Matrices u, l, c are created according to the edges where each of them has assigned triple
(
l(e), u(e), c(e)

)
.

If an image is binary then ∀e ∈ E(G) : l(e) = 0, u(e) = 1, c(e) ∈ R. To get details about c(e) calcu-
lation please refer to section 2.3. Having created all necessary vector and matrices the Minimum
Flow Cost Problem can be solved by the TORSCHE mincostflow function.

% create empty graph

>> G = graph;

% generate b,l,u,c

% ...

% solve the minimal cost flow problem

>> F = G.mincostflow(c,l,u,b);

The output of the mincostflow function is matrix F which corresponds to the minimum cost
feasible flows in network (G, b, l, u, c). Matrix F has to be transformed into a binary image by the
following way. For each edge having a non-zero flow set its corresponding pixel to white otherwise
leave it black. The algorithm is iterating until a stop criterion is reached, i.e. an image is stable
or a given number of iterations is performed. To display image I use the following script.

>> subplot(..., ..., ...);

>> imagesc(logical(I));

>> colormap(gray);

>> axis off;

>> axis square;
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2.3 Calculating the edge cost using knowledge of the image structure

Matrix c is one of the parameters of the mincostflow function. If there is no edge between two
nodes then set its cost to 01. The cost for each existing edge in graph G is calculated as follows.

1. Set the initial edge cost to zero, i.e. c(e) = 0.

2. If a 3 × 3 pixel neighbourhood can be selected in the previous image (see Figure 5) then
continue to the next step otherwise go to step 7.

3. If the central pixel is white and another white pixel cannot be found in its Moore neighbour-
hood (8 surrounding pixels) then set c(e) = 1.

4. If the central pixel is white and exactly one pixel is white in its Moore neighbourhood then
set c(e) = 0.2.

5. If the central pixel is white and exactly two pixels are white in its Moore neighbourhood
then set c(e) = 0.1.

6. If the central pixel is black and there is at least one pair of the opposite white pixels in its
von Neumann neighbourhood (4 surrounding pixels) then set c(e) = -0.1.

7. The resulting edge cost is c(e) = c(e) + 0.5 · cprev(e) where cprev is the next-to-last edge cost.
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Figure 5: Types of neighbourhoods.

3 A seminar assignment

A seminar assignment: Using sumR = [3,2,4,1] and sumC = [2,1,?,3] projections cal-
culate “?” value and sketch a network graph similar to Figure 4.

4 A homework assignment

A homework assignment: Using projections (vectors sumR and sumC) saved in file
projectionData.mat reconstruct a square binary image that is 20 by 20 pixels in size. The
Minimum Cost Flow Problem should be solved in a way how it is described in section 2. In
case of having a correct implementation the final image should be retrieved in 62 iterations.
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1The TORSCHE toolbox requires this value to be set to zero but it is more intuitive to set this value to ∞.
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