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Method 1: Geometric Error Optimization

* we need to encode the constraints y F x; = 0, rank F = 2
e idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
e equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

Pi=[ 0], Py=[e],Ft+ee e

@® H3; 2pt: Verify that F is a f.m. of Py, P3, for instance that F ~ Q;TQI[m]X

1. compute F© by the 7-point algorithm — Slide 81; construct camera Péo) from F(®

2. triangulate 3D points Xfo) from correspondences (z;,y;) for all i = 1,...,k — Slide 85
3. express the energy function as reprojection error

Wi(zi,yi | Xi,P2) = [|xi — %[> + lyi — i[> where % ~P:1X;, 3, ~ P2 X,

4. starting from P<20), X© minimize

k
(X", P3) =arg min > Wi(zi,y: | Xi,P2)
P2, X 21 .
5. compute F from Py, P} ¥, = N P4 Py A

N D= Mag (4,% o
e 3k 4+ 12 parameters to be found: latent: X, for all 7 (correspondences!), non-latent: 152
. . . -
e minimal representation: 3k -+ 7 parameters, Po = Po(F) — Slide 138  UPV = F
e there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 131
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»Method 2: First-Order Error Approximation

An elegant method for solving problems like (14):

e we will get rid of the latent parameters
e we will recycle the algebraic error € = XTFK from Slide 81

[H&Z, p. 287], [Sampson 1982]

Observations:
e correspondences ; <> §j; satisfy YIF % =0, % = (4,94 1), vi= (42, 9%,1)
o this is a manifold V& € R*: a set of points Z = (@', o, 42, ©%) consistent with F

o let Z; be the closest point on Vi to measurement Z;, then (see (13))

1Zi = Z))* = (ui = @0)* + (vi = 00) + (uf = a))* + (v] = )

N ~ ef £
= Vilwi, i | #4,50, F) < |e(Zi, Z)|?

which is what we needed in (14)

Z; = (u',v', v’ v®) — measurement

algebraic error: e(Z:) def YZ-TF % (=0)

i

Sampson’s idea: Linearize €(Z;) (with hat!) at Z; (no hat!) and estimate e(Z;, Z;) with it
R. Sara, CMP; rev. 6-Nov—2012 @l
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»Sampson’s Idea

Linearize e(Zi) at Z; per correspondence and estimate e(Zi,Zi) with it
have: (Z;), want: e(Z;, Z;)

e(Zi) ~ e(Z;)+ % (Z; — Zy) &f e(Zi)+ J(Z:) e(Z:,Z;) 0
- N——

HZi)  e(Z,Z;)
lllustration on circle fitting

We are estimating distance from point x to circle Vo of radius r in canonical position.

The circle is &(x) = ||x||2 — 2 = 0. Then Ixits x'x %€
- Oe(x R R def .
e®) ~ o)+ (ko)== 2w (4 ) Y eu) @
——— N—— =0
J(x)=2xT e(%x,x)
2 2
and e (X) = 0'is a line with normal % and intercept o ;H!:I{I” not tangent to V¢, outside!

X1 e

\1(&):0

v
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»Sampson Error Approximation

In general, the Taylor expansion is

(Z0) + =57 (2= Z0) = (Z) + J(Z) e(Zi,Z:) =0
i —— —— N——
™ Y €, €R™  J,eRmd  e;cRY
Ji(Z;)  e(Z;,Z;)
to find Z; closest to Z;, we estimate e; from €; by minimizing per correspondence X;

e; = argmin||e;||* subjectto e +J;e; =0
e;

which gives a closed-form solution ® P1; 1pt: derive e

ef =-J/(3.J)) e

lei | = e/ (3:3.]) e

e note that J; is not invertible!
e we often do not need Z;, just the squared distance |le;||2  exception: triangulation — Slide 100

e the unknown parameters F are inside: e; = ¢;(F), g; = ;(F), J; = J;(F)
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»Sampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

k
F* =arg min Zef(F)
i=1

F,rank F=2 4

Fr 1 0 O
Let F= [F1 K> Ks| (per columns) = {(E (perrows), S= |0 1 O], then
0 0 O
Sampson
Ei = X,LTF Xi g, €R scalar algebraic error from Slide 81
Og; Oe; 0Ogi Oy
J: = l:au;i , (91),:-1 , 8u:2’ 8’1):2 J; € RY derivatives over point coords.
82
e?(F) = HJ:”Q e; € R Sampson error

J F7 )7 FOT 7 2@ (YzTFZ‘i)Q

= i i X X; €; = =

g |:( 1) Z’u ( 2) X’H ( ) 2 ( ) __1:| l( ) HSF)S7.||2+”SFT¥1”2
e Sampson correction ‘normalizes’ the algebraic error

® automatically copes with multiplicative factors F +— AF

® actual optimization not yet covered — Slide 103
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»Back to Triangulation: The Golden Standard Method

We are given P, P2 and a single correspondence = <+ y and we look for 3D point X

projecting to x and y. — Slide 85
Idea:
1. compute F from Py, P2, eg. F = (Q1Q; ") "[a1 — (Q1Q5 Maz],
2. correct measurement by the linear estimate of the correction vector — Slide 98
ul T (F1)Ty
| y Fx (F)Ty
u?| [ISFx|? + [[SFTy|? |(F})x
v? - (F2)Tx
3. use the SVD algorithm with numerical conditioning — Slide 86
Ex (cont’d from Slide 89):
Cl Cz

X — noiseless ground truth position
— reprojection error minimizer
X — Sampson-corrected algebraic error minimizer
X, — algebraic error minimizer
m — measurement (mqg with noise in v2)

Cl C2
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Levenberg-Marquardt (LM) Iterative Estimation

Consider error function e;(0) = f(x;,y:,0) € R™, with x;,y; given, & € R? unknown
0 =F, q=9, m =1 for f.m. estimation
Our goal: 0" = arg melnz le:(6)]

Idea 1 (Gauss-Newton approximation): proceed iteratively folz s=0,1,2,...

s+1.__ ps — 3 . s 2
0°7 =0 +d,, where ds = arg Hgnz llei(6° +d)|| (15)

Iy
(0°) +L; d, “

(Li)jl = W)l]’ L; ¢ R™1 typically a long matrix

e(0°+d)~

Then the solution to Problem (15) is a set of normal eqs

_ZLTeZ (6°) (ZLT > e-Lld, (16)

Jo = e\L
0’3 = v (L\ e
e d; can be solved for by Gaussian elimination using Choleski decomposition of L

L symmetric = use Choleski, almost 2x faster than Gauss-Seidel, see bundle adjustment
slide 134
e such updates do not lead to stable convergence — ideas of Levenberg and Marquardt

g \¢<ﬁ=q

ecRy:1 LeRY-9
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LM (cont'd)

Idea 2 (Levenberg): replace 3°, L/ L; with >, L/ L; + A I for some damping factor A > 0
Idea 3 (Marquardt): replace AI with A", diag(L, L;) to adapt to local curvature:

>o(..'a& L - (4+,\\(_

k k
—-> Liei(6°) = (Z(LILi + AdiagL; L;) | d.
i=1 i=1 W"A':d L — L
Idea 4 (Marquardt): adaptive A small A — Gauss-Newton, large A — gradient descend

1. choose A ~ 1073 and compute d,
2.0f Y0, [|ei(0° +ds)||> < X2, |lei(8°)]|* then accept ds and set A :=\/10, s:=s+1

3. otherwise set A := 10\ and recompute d;

e sometimes different constants are needed for the 10 and 10~3

e note that L; € R™ 9 (long matrix) but each contribution LiTLi is a square singular ¢ X ¢
matrix (always singular for k& < g)

® error can be made robust to outliers, see the trick on Slide 106

® we have approximated the least squares Hessian by ignoring second derivatives of the error
function (Gauss-Newton approximation) See [Triggs et al. 1999, Sec. 4.3]

® )\ helps avoid the consequences of gauge freedom — Slide 136
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LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates ut, vt u?, v2)
)= S = () Fxi)” s—lo 1 o
T EE T SExlE 1 STy P 00 o

LM (by linearization over parameters F')

Oei(F) 1 ( ) T 2ei o\
L, = = Yi — SFx; |x;, +yi|% — 75 SF yi
oF 2| { N HJ || N 1dall = =

F=0UbdV

2
e L, is a 3 X 3 matrix, must be reshaped to dimension-9 vector D= (u’fl 7, ' 0 )

® x; and y; in Sampson error are normalized to unit homogeneous coordinate

e reinforce rank F = 2 after each LM update to stay in the fundamental matrix manifold and
[|F|| =1 to avoid gauge freedom (by SVD, see Slide 104)

e LM linearization could be done by numerical differentiation (small dimension)
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»Local Optimization for Fundamental Matrix Estimation

Given a set {(x:,y:)}F_1 of k > 7 inlier correspondences, compute an efficient estimate for
fundamental matrix F.

1. Find the conditioned (— Slide 88) 7-point Fo (— Slide 81) from a suitable 7-tuple

2. Improve the F§ using the LM optimization (— Slides 101-102) and the Sampson error
(— Slide 103) on all inliers, reinforce rank-2, unit-norm Fj; after each LM iteration
using SVD

e if there are no wrong matches (outliers), this gives a local optimum
e contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm
e the full problem involves finding the inliers!

e in addition, we need a mechanism for jumping out of local minima (and exploring the space of
all fundamental matrices)
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» The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points X = {z;};2; and Y = {y;}7—; and their
descriptors D, find the most probable
1. inliers Sy C X, Sy CY
2. one-to-one perfect matching M: SX — Sy perfect matching: 1-factor of the bipartite graph
3. fundamental matrix F' such that rank F = 2
4. such that for each x; € Sx and y; = M(x;) it is probable that
a. the image descriptor D(x;) is similar to D(y;), and
b. the total geometric error 3, . e?j (F) is small note a slight change in notation: e ;
5. inlier-outlier and outlier-outlier matches are improbable

M: Y
12345678
1
1y D:O
X 3
4 =1
M=
6
(M",F") = argmax p(M, F | X,Y, D) (17)

e probabilistic model: an efficient language for task formulation
e the (17) is a p.d.f. for all the involved variables (there is a constant number of variables!)

e binary matching table M;; € {0,1} of fixed size m x n
® each row/column contains at most one unity
e zero rows/columns correspond to unmatched point x; /y;
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Thank You



quadratic algebraic error g(%k)

linear function over R?: e (%)

line in R?: e,(X)
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