

OPPA European Social Fund Prague & EU: We invest in your future.

Method 1: Geometric Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_i \mathbf{F} \hat{\mathbf{x}}_i = 0$, rank $\mathbf{F} = 2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization $\mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} [\mathbf{e}_2] & \mathbf{F} + \mathbf{e}_2 \mathbf{e}_1^\top & \mathbf{e}_2 \end{bmatrix}$

$$\circledast$$
 H3; 2pt: Verify that \mathbf{F} is a f.m. of \mathbf{P}_1 , \mathbf{P}_2 , for instance that $\mathbf{F} \simeq \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} [\mathbf{e}_1]_{\times}$

- 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm \rightarrow Slide 81; construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$
- 2. triangulate 3D points $\hat{X}_i^{(0)}$ from correspondences (x_i, y_i) for all $i = 1, \dots, k \to \mathsf{Slide}$ 85 3. express the energy function as reprojection error

$$W_i(x_i,y_i\mid \hat{X}_i,\mathbf{P}_2) = \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2 + \|\mathbf{y}_i - \hat{\mathbf{y}}_i\|^2 \quad ext{where} \quad \hat{\mathbf{\underline{x}}}_i \simeq \mathbf{P}_1 \hat{\mathbf{\underline{X}}}_i, \; \hat{\mathbf{y}}_i \simeq \mathbf{P}_2 \; \hat{\mathbf{\underline{X}}}_i$$

4. starting from $\mathbf{P}_2^{(0)}$, $\hat{X}^{(0)}$ minimize

- $(\hat{X}^*, \mathbf{P}_2^*) = \arg\min_{\mathbf{P}_2, \hat{X}} \sum_{i=1}^{\kappa} W_i(x_i, y_i \mid \hat{X}_i, \mathbf{P}_2)$ =1
 P, = \(\text{P}_2 \)
 P_2 || = \(\text{P}_{34} = \) 5. compute \mathbf{F} from \mathbf{P}_1 , \mathbf{P}_2^*
- 3k+12 parameters to be found: latent: $\hat{\mathbf{X}}_i$, for all i (correspondences!), non-latent: \mathbf{P}_2 • minimal representation: 3k + 7 parameters, $\mathbf{P_2} = \mathbf{P_2}(\mathbf{F}) \to \mathsf{Slide}$ 138

 there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 131 R. Šára, CMP; rev. 6-Nov-2012

► Method 2: First-Order Error Approximation

An elegant method for solving problems like (14):

• we will get rid of the latent parameters

- [H&Z, p. 287], [Sampson 1982]
- ullet we will recycle the algebraic error $oldsymbol{arepsilon} = \mathbf{y}^{ op} \mathbf{F} \, \mathbf{ar{x}}$ from Slide 81

Observations:

- correspondences $\hat{x}_i \leftrightarrow \hat{y}_i$ satisfy $\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0$, $\hat{\mathbf{x}}_i = (\hat{u}^1, \hat{v}^1, 1)$, $\hat{\mathbf{y}}_i = (\hat{u}^2, \hat{v}^2, 1)$
- this is a manifold $\mathcal{V}_F \in \mathbb{R}^4$: a set of points $\hat{\mathbf{Z}} = (\hat{u}^1,\,\hat{v}^1,\,\hat{u}^2,\,\hat{v}^2)$ consistent with \mathbf{F}
- let $\hat{\mathbf{Z}}_i$ be the closest point on \mathcal{V}_F to measurement \mathbf{Z}_i , then (see (13))

 $\mathbf{Z}_i = \left(u^1, v^1, u^2, v^2\right)$ – measurement algebraic error: $\boldsymbol{\varepsilon}(\hat{\mathbf{Z}}_i) \stackrel{\mathrm{def}}{=} \hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \, \hat{\mathbf{x}}_i \ \ (= \mathbf{0})$

Sampson's idea: Linearize $e(\hat{\mathbf{Z}}_i)$ (with hat!) at \mathbf{Z}_i (no hat!) and estimate $e(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)$ with it

►Sampson's Idea

Linearize $m{arepsilon}(\hat{f Z}_i)$ at $f{Z}_i$ per correspondence and estimate $f{e}(\hat{f Z}_i, f{Z}_i)$ with it

have: $\boldsymbol{arepsilon}(\mathbf{Z}_i)$, want: $\mathbf{e}(\mathbf{\hat{Z}}_i,\mathbf{Z}_i)$

$$\boldsymbol{\varepsilon}(\hat{\mathbf{Z}}_i) \approx \boldsymbol{\varepsilon}(\mathbf{Z}_i) + \underbrace{\frac{\partial \boldsymbol{\varepsilon}(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}(\mathbf{Z}_i)} \underbrace{(\hat{\mathbf{Z}}_i - \mathbf{Z}_i)}_{\mathbf{e}(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)} \stackrel{\text{def}}{=} \underbrace{\boldsymbol{\varepsilon}(\mathbf{Z}_i) + \mathbf{J}(\mathbf{Z}_i) \, \mathbf{e}(\hat{\mathbf{Z}}_i, \mathbf{Z}_i) \stackrel{!}{=} 0}$$

Illustration on circle fitting

We are estimating distance from point \mathbf{x} to circle \mathcal{V}_C of radius r in canonical position. The circle is $\boldsymbol{\varepsilon}(\mathbf{x}) = \|\mathbf{x}\|^2 - r^2 = 0$. Then $\|\mathbf{x}\|^2 = \mathbf{x}^\mathsf{T}\mathbf{x}$

 $\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x}) + \underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}}}_{\text{(}\hat{\mathbf{x}} - \mathbf{x})} = \cdots = 2 \mathbf{x}^{\top} \hat{\mathbf{x}} - (r^2 + ||\mathbf{x}||^2) \stackrel{\text{def}}{=} \varepsilon_L(\hat{\mathbf{x}})$

 $\mathbf{J}(\mathbf{x}) = 2\mathbf{x}^{\top} \quad \mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})$

and $\varepsilon_L(\hat{\mathbf{x}}) = 0$ is a $\underline{\text{line}}$ with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^2 + \|\mathbf{x}\|^2}{2\|\mathbf{x}\|}$ not tangent to \mathcal{V}_C , outside!

▶Sampson Error Approximation

In general, the Taylor expansion is

$$\varepsilon(\mathbf{Z}_i) + \underbrace{\frac{\partial \varepsilon(\mathbf{Z}_i)}{\partial \mathbf{Z}_i}}_{\mathbf{J}_i(\mathbf{Z}_i)} \underbrace{(\hat{\mathbf{Z}}_i - \mathbf{Z}_i)}_{\mathbf{e}(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)} = \underbrace{\varepsilon(\mathbf{Z}_i)}_{\varepsilon_i \in \mathbb{R}^n} + \underbrace{\mathbf{J}(\mathbf{Z}_i)}_{\mathbf{J}_i \in \mathbb{R}^{n,d}} \underbrace{\mathbf{e}(\hat{\mathbf{Z}}_i, \mathbf{Z}_i)}_{\mathbf{e}_i \in \mathbb{R}^d} \stackrel{!}{=} 0$$

to find $\hat{\mathbf{Z}}_i$ closest to \mathbf{Z}_i , we estimate \mathbf{e}_i from ε_i by minimizing per correspondence \mathbf{X}_i

$$\mathbf{e}_{i}^{*} = \arg\min_{\mathbf{e}_{i}} \|\mathbf{e}_{i}\|^{2}$$
 subject to $\mathbf{\varepsilon}_{i} + \mathbf{J}_{i} \, \mathbf{e}_{i} = 0$

which gives a closed-form solution

$$\circledast$$
 P1; 1pt: derive \mathbf{e}_i^* $\mathbf{e}_i^* = -\mathbf{J}_i^{ op}(\mathbf{J}_i\mathbf{J}_i^{ op})^{-1}oldsymbol{arepsilon}_i$

- note that J_i is not invertible!
- ullet we often do not need $\hat{f Z}_i$, just the squared distance $\|{f e}_i\|^2$ exception: triangulation o Slide 100

 $\|\mathbf{e}_{i}^{*}\|^{2} = \boldsymbol{\varepsilon}_{i}^{\top} (\mathbf{J}_{i} \mathbf{J}_{i}^{\top})^{-1} \boldsymbol{\varepsilon}_{i}$

• the unknown parameters ${\bf F}$ are inside: ${\bf e}_i={\bf e}_i({\bf F}),\; {m arepsilon}_i={m arepsilon}_i({\bf F}),\; {f J}_i={f J}_i({\bf F})$

▶Sampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

$$\mathbf{F}^* = \arg\min_{\mathbf{F}, \text{rank } \mathbf{F} = 2} \sum_{i=1}^{\kappa} e_i^2(\mathbf{F})$$

Let
$$\mathbf{F} = \begin{bmatrix} \mathbf{F}_1 & \mathbf{F}_2 & \mathbf{F}_3 \end{bmatrix}$$
 (per columns) $= \begin{bmatrix} (\mathbf{F}^2)^\top \\ (\mathbf{F}^3)^\top \end{bmatrix}$ (per rows), $\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then

Sampson

$$\begin{split} \varepsilon_i &= \underline{\mathbf{y}}_i^\top \mathbf{F} \, \underline{\mathbf{x}}_i & \varepsilon_i \in \mathbb{R} & \text{scalar algebraic error from Slide 81} \\ \mathbf{J}_i &= \left[\frac{\partial \varepsilon_i}{\partial u_i^1}, \, \frac{\partial \varepsilon_i}{\partial v_i^2}, \, \frac{\partial \varepsilon_i}{\partial u_i^2}, \, \frac{\partial \varepsilon_i}{\partial v_i^2} \right] & \mathbf{J}_i \in \mathbb{R}^{1,4} & \text{derivatives over point coords.} \\ e_i^2(\mathbf{F}) &= \frac{\varepsilon_i^2}{\|\mathbf{J}_i\|^2} & e_i \in \mathbb{R} & \text{Sampson error} \end{split}$$

$$\mathbf{J}_i = \left[(\mathbf{F}_1)^\top \underline{\mathbf{y}}_i, \ (\mathbf{F}_2)^\top \underline{\mathbf{y}}_i, \ (\mathbf{F}^1)^\top \underline{\mathbf{x}}_i, \ (\mathbf{F}^2)^\top \underline{\mathbf{x}}_i \right] \qquad e_i^2(\mathbf{F}) = \frac{(\underline{\mathbf{y}}_i^\top \mathbf{F} \underline{\mathbf{x}}_i)^2}{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}_i\|^2 + \|\mathbf{S} \mathbf{F}^\top \mathbf{y}_i\|^2}$$

- Sampson correction 'normalizes' the algebraic error
- ullet automatically copes with multiplicative factors ${f F}\mapsto \lambda {f F}$
- actual optimization not yet covered → Slide 103

R. Šára, CMP; rev. 6-Nov-2012

► Back to Triangulation: The Golden Standard Method

We are given P_1 , P_2 and a single correspondence $x \leftrightarrow y$ and we look for 3D point X projecting to x and y. \longrightarrow Slide 85

Idea:

- 1. compute F from P_1 , P_2 , e.g. $F = (\mathbf{Q}_1\mathbf{Q}_2^{-1})^{\top}[\mathbf{q}_1 (\mathbf{Q}_1\mathbf{Q}_2^{-1})\mathbf{q}_2]_{\times}$
- 2. correct measurement by the linear estimate of the correction vector \rightarrow Slide 98

$$\left(\begin{array}{|c|c|} \begin{bmatrix} \hat{u}^1 \\ \hat{v}^1 \\ \hat{u}^2 \\ \hat{v}^2 \end{bmatrix} \approx \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\varepsilon}{\|\mathbf{J}\|^2} \, \mathbf{J}^\top \right) = \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\underline{\mathbf{y}}^\top \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S} \mathbf{F} \underline{\mathbf{x}}\|^2 + \|\mathbf{S} \mathbf{F}^\top \underline{\mathbf{y}}\|^2} \, \begin{bmatrix} (\mathbf{F}_1)^\top \mathbf{y} \\ (\mathbf{F}_2)^\top \mathbf{y} \\ (\mathbf{F}^1)^\top \mathbf{x} \\ (\mathbf{F}^2)^\top \mathbf{x} \end{bmatrix}$$

3. use the SVD algorithm with numerical conditioning

→ Slide 86

Ex (cont'd from Slide 89):

Levenberg-Marquardt (LM) Iterative Estimation

Consider error function $\mathbf{e}_i(\boldsymbol{\theta}) = f(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \in \mathbb{R}^m$, with $\mathbf{x}_i, \mathbf{y}_i$ given, $\boldsymbol{\theta} \in \mathbb{R}^q$ unknown $\theta=\mathbf{F},\,q=9,\,m=1$ for f.m. estimation

Our goal: $\theta^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \|\mathbf{e}_i(\boldsymbol{\theta})\|^2$

Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2,\ldots$

$$egin{aligned} oldsymbol{ heta}^{s+1} &:= oldsymbol{ heta}^s + \mathbf{d}_s \,, & ext{where} & \mathbf{d}_s = rg \min_{\mathbf{d}} \sum_{i=1}^n \|\mathbf{e}_i(oldsymbol{ heta}^s + \mathbf{d})\|^2 \ \mathbf{e}_i(oldsymbol{ heta}^s + \mathbf{d}) &pprox \|\mathbf{e}_i(oldsymbol{ heta}^s) + \mathbf{L}_i \, \mathbf{d}, \| \| \ \mathbf{E}_i(oldsymbol{ heta}^s) + \mathbf{L}_i \, \mathbf{d}, \| \| \mathbf{e}_i(oldsymbol{ heta}^s + \mathbf{d}) \|^2 \end{aligned}$$

$$(\mathbf{L}_i)_{jl} = \frac{\partial \left(\mathbf{e}_i(oldsymbol{ heta})\right)_j}{\partial (oldsymbol{ heta})_l}, \qquad \mathbf{L}_i \in \mathbb{R}^{m,q} \qquad ext{typically a long matrix}$$

Then the solution to Problem (15) is a set of normal eqs

Then the solution to Problem (15) is a set of normal eqs
$$-\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}(\boldsymbol{\theta}^{s}) = \underbrace{\left(\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)}_{\mathbf{L} \in \mathbb{R}^{q,q}} \mathbf{d}_{s}, \qquad \mathbf{e} = \mathbf{L} \mathbf{d}_{s} \qquad (16)$$

- ullet d_s can be solved for by Gaussian elimination using Choleski decomposition of ${f L}$ ${f L}$ symmetric \Rightarrow use Choleski, almost 2 imes faster than Gauss-Seidel, see bundle adjustment
- slide 134 such updates do not lead to stable convergence → ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_i \mathbf{L}_i^{\top} \mathbf{L}_i$ with $\sum_i \mathbf{L}_i^{\top} \mathbf{L}_i + \lambda \mathbf{I}$ for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\lambda \sum_i \operatorname{diag}(\mathbf{L}_i^{\top} \mathbf{L}_i)$ to adapt to local curvature:

$$-\sum_{i=1}^k \mathbf{L}_i^\top \mathbf{e}_i(\boldsymbol{\theta}^s) = \left(\sum_{i=1}^k \left(\mathbf{L}_i^\top \mathbf{L}_i + \lambda \operatorname{diag} \mathbf{L}_i^\top \mathbf{L}_i\right)\right) \frac{\mathbf{d}_s}{\mathbf{d}_s} \quad \ell \mapsto \ell$$

- 1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_s
- 2. if $\sum_i \|\mathbf{e}_i(\boldsymbol{\theta}^s + \mathbf{d}_s)\|^2 < \sum_i \|\mathbf{e}_i(\boldsymbol{\theta}^s)\|^2$ then accept \mathbf{d}_s and set $\lambda := \lambda/10$, s := s+1
- 3. otherwise set $\lambda := 10\lambda$ and recompute \mathbf{d}_s
- ullet sometimes different constants are needed for the 10 and 10^{-3}
- note that $\mathbf{L}_i \in \mathbb{R}^{m,q}$ (long matrix) but each contribution $\mathbf{L}_i^{\top}\mathbf{L}_i$ is a square singular $q \times q$ matrix (always singular for k < q)
- error can be made robust to outliers, see the trick on Slide 106
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation)
 See [Triggs et al. 1999, Sec. 4.3]
- λ helps avoid the consequences of gauge freedom o Slide 136

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u^1, v^1, u^2, v^2)

$$e_i^2(\mathbf{F}) = \frac{\varepsilon_i^2}{\|\mathbf{J}_i\|^2} = \frac{(\mathbf{\underline{y}}_i^\top \mathbf{F} \mathbf{\underline{x}}_i)^2}{\|\mathbf{S} \mathbf{F} \mathbf{\underline{x}}_i\|^2 + \|\mathbf{S} \mathbf{F}^\top \mathbf{\underline{y}}_i\|^2} \qquad \mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

LM (by linearization over parameters F)

$$\mathbf{L}_{i} = \frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}} = \frac{1}{2\|\mathbf{J}_{i}\|} \left[\left(\underline{\mathbf{y}}_{i} - \frac{2e_{i}}{\|\mathbf{J}_{i}\|} \mathbf{S} \mathbf{F} \underline{\mathbf{x}}_{i} \right) \underline{\mathbf{x}}_{i}^{\top} + \underline{\mathbf{y}}_{i} \left(\underline{\mathbf{x}}_{i} - \frac{2e_{i}}{\|\mathbf{J}_{i}\|} \mathbf{S} \mathbf{F}^{\top} \underline{\mathbf{y}}_{i} \right)^{\top} \right]$$

- \mathbf{L}_i is a 3×3 matrix, must be reshaped to dimension-9 vector $\mathbf{D} = (\sigma_{i_1}^{\mathbf{L}} \sigma_{i_2}^{\mathbf{L}} \mathbf{0})$
- ullet \mathbf{x}_i and \mathbf{y}_i in Sampson error are normalized to unit homogeneous coordinate
- reinforce ${\rm rank}\,{\bf F}=2$ after each LM update to stay in the fundamental matrix manifold and $\|{\bf F}\|=1$ to avoid gauge freedom (by SVD, see Slide 104)
- LM linearization could be done by numerical differentiation (small dimension)

► Local Optimization for Fundamental Matrix Estimation

Given a set $\{(x_i, y_i)\}_{i=1}^k$ of k > 7 inlier correspondences, compute an efficient estimate for fundamental matrix \mathbf{F} .

- 1. Find the conditioned (\rightarrow Slide 88) 7-point ${\bf F}_0$ (\rightarrow Slide 81) from a suitable 7-tuple
- Improve the F₀* using the LM optimization (→ Slides 101–102) and the Sampson error (→ Slide 103) on all inliers, reinforce rank-2, unit-norm F_k* after each LM iteration using SVD

- if there are no wrong matches (outliers), this gives a local optimum
- contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

▶ The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points $X = \{x_i\}_{i=1}^m$ and $Y = \{y_i\}_{i=1}^n$ and their descriptors D, find the most probable

- 1. inliers $S_X \subseteq X$, $S_Y \subseteq Y$
- 2. one-to-one perfect matching $M: S_X \to S_Y$

perfect matching: 1-factor of the bipartite graph 3. fundamental matrix \mathbf{F} such that rank $\mathbf{F} = 2$

- 4. such that for each $x_i \in S_X$ and $y_i = M(x_i)$ it is probable that
 - a. the image descriptor $D(x_i)$ is similar to $D(y_i)$, and
 - b. the total geometric error $\sum_{ij} e_{ij}^2(\mathbf{F})$ is small

note a slight change in notation: e_{ij}

5. inlier-outlier and outlier-outlier matches are improbable

$$(M^*, \mathbf{F}^*) = \arg\max_{M, \mathbf{F}} p(M, \mathbf{F} \mid X, Y, D)$$
(17)

- probabilistic model: an efficient language for task formulation
- the (17) is a p.d.f. for all the involved variables
- binary matching table $M_{ij} \in \{0,1\}$ of fixed size $m \times n$ each row/column contains at most one unity
 - zero rows/columns correspond to unmatched point x_i/y_i
- R. Šára, CMP; rev. 6-Nov-2012 [10]

(there is a constant number of variables!)

OPPA European Social Fund Prague & EU: We invest in your future.