Part III

Computing with a Single Camera

- 1 Calibration: Internal Camera Parameters from Vanishing Points and Lines
- 2 Resectioning: Projection Matrix from 6 Known Points
- 3 Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981
- [3] [Golub & van Loan 1996, Sec. 2.5]

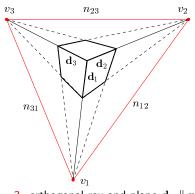
Obtaining Vanishing Points and Lines

orthogonal pairs can be collected from more images by camera rotation

vanishing line can be obtained without vanishing points (see Slide 46)

► Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K



$$\mathbf{d}_i = \mathbf{Q}^{-1} \mathbf{y}_i,$$
 $i = 1, 2, 3$ Slide 33 $\mathbf{p}_{ij} = \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij},$ $i, j = 1, 2, 3, i \neq j$ Slide 36

Constraints

1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then

$$0 = \mathbf{d}_1^{\top} \mathbf{d}_2 = \underline{\mathbf{v}}_1^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_2 = \underline{\mathbf{v}}_1^{\top} \underbrace{(\mathbf{K} \mathbf{K}^{\top})^{-1}}_{} \underline{\mathbf{v}}_2$$

2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space $\boldsymbol{\omega}^{\text{(IAC)}}$

$$0 = \mathbf{p}_{ij}^{\mathsf{T}} \mathbf{p}_{ik} = \underline{\mathbf{n}}_{ij}^{\mathsf{T}} \mathbf{Q} \mathbf{Q}^{\mathsf{T}} \underline{\mathbf{n}}_{ik} = \underline{\mathbf{n}}_{ij}^{\mathsf{T}} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik}$$

- 3. orthogonal ray and plane $\mathbf{d}_k \parallel \mathbf{p}_{ij}, \ k \neq i, j$ normal parallel to optical ray $\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{ij} = \lambda \mathbf{Q}^{-1} \underline{\mathbf{v}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \lambda \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k = \lambda \omega \ \underline{\mathbf{v}}_k, \qquad \lambda \neq 0$
 - n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio
- ω is a symmetric, positive definite 3×3 matrix IAC = Image of Absolute Conic

▶cont'd

	condition	constraint	# constraints
(2)	orthogonal v.p.	$\underline{\mathbf{v}}_i^\top \boldsymbol{\omega} \underline{\mathbf{v}}_j = 0$	1
(3)	orthogonal v.l.	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
(4)	v.p. orthogonal to v.l.	$\mathbf{\underline{n}}_{ij} = \pmb{\lambda} \pmb{\omega} \mathbf{\underline{v}}_k$	2
(5)	orthogonal raster $\theta=\pi/2$	$\omega_{12}=\omega_{21}=0$	1
(6)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11}=\omega_{22}$	1
(7)	known principal point $u_0=v_0=0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$) 2

- these are homogeneous linear equations for the 5 parameters in ω in the form $D\mathbf{w} = \mathbf{0}$ λ can be eliminated from (4)
 - we will come to solving overdetermined homogeneous equations later ightarrow Slide 97

we need at least 5 constraints for full K

• we get \mathbf{K} from $\boldsymbol{\omega}^{-1} = \mathbf{K}\mathbf{K}^{\top}$ by Choleski decomposition the decomposition returns a positive definite upper triangular matrix one avoids solving a set of quadratic equations for the parameters in \mathbf{K}

$$\label{eq:local_local_local} \begin{split} & \ln[t] \coloneqq \, K = \{ \{ \texttt{f}, \, \texttt{s}, \, \texttt{u}[0] \}, \, \{ \texttt{0}, \, \, \texttt{a} \star \texttt{f}, \, \, \texttt{v}[0] \}, \, \{ \texttt{0}, \, \texttt{0}, \, \texttt{1} \} \}; \\ & K \, / / \, \, \texttt{MatrixForm} \end{split}$$

$$\begin{array}{c} \text{Out[2]/MatrixForm=} \\ \left(\begin{array}{ccc} f & s & u \left[0 \right] \\ 0 & a f & v \left[0 \right] \\ 0 & 0 & 1 \end{array} \right) \end{array}$$

 $ln[4]:=\omega = Inverse[K.Transpose[K]] * Det[K]^2;$ ω // Simplify // MatrixForm

Out[5]//MatrixForm=

$$\begin{pmatrix} a^2\,f^2 & -a\,f\,s & a\,f\,\left(-a\,f\,u[0] + s\,v[0]\right) \\ -a\,f\,s & f^2 + s^2 & a\,f\,s\,u[0] - \left(f^2 + s^2\right)\,v[0] \\ a\,f\,\left(-a\,f\,u[0] + s\,v[0]\right) & a\,f\,s\,u[0] - \left(f^2 + s^2\right)\,v[0] & a^2\,f^2\left(f^2 + u[0]^2\right) - 2\,a\,f\,s\,u[0]\,v[0] + \left(f^2 + s^2\right)\,v[0]^2 \end{pmatrix}$$

 $\ln |s| = \omega / f^2 / s \rightarrow 0 // Simplify // MatrixForm$

Out[8]//MatrixForm=

$$\begin{pmatrix} a^2 & 0 & -a^2 u[0] \\ 0 & 1 & -v[0] \\ -a^2 u[0] & -v[0] & a^2 (f^2 + u[0]^2) + v[0]^2 \end{pmatrix}$$

 $ln[10] = \omega /. \{u[0] \rightarrow 0, v[0] \rightarrow 0\} // MatrixForm$

Out[10]/MatrixForm=
$$\begin{pmatrix}
a^{2} f^{2} - afs & 0 \\
-afs f^{2} + s^{2} & 0 \\
0 & 0 & a^{2} f^{4}
\end{pmatrix}$$

 $ln[17] = \omega / f^2 / . \{a \rightarrow 1, s \rightarrow 0\} // Simplify // MatrixForm$

Out[17]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & -u[0] \\ 0 & 1 & -v[0] \\ -u[0] & -v[0] & f^2 + u[0]^2 + v[0]^2 \end{pmatrix}$$

Examples

Ex 1:

Assuming known $m_0=(u_0,v_0)$, two <u>finite</u> orthogonal vanishing points suffice to get f in this formula, \mathbf{v}_i , \mathbf{m}_0 are not homogeneous!

$$f^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^\top (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

Ex 2:

Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos\phi = \frac{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}{\sqrt{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_i} \sqrt{\mathbf{v}_j^\top \boldsymbol{\omega} \mathbf{v}_j}}$

- leads to polynomial equations
- e.g. assuming orthogonal raster, unit aspect (ORUA): $a=1,~\theta=\pi/2$

$$\boldsymbol{\omega} = \frac{1}{f^2} \begin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

• ORUA and $u_0 = v_0 = 0$ gives

$$(\mathbf{f}^2 + \mathbf{v}_i^{\top} \mathbf{v}_i)^2 = (\mathbf{f}^2 + ||\mathbf{v}_i||^2) \cdot (\mathbf{f}^2 + ||\mathbf{v}_i||^2) \cdot \cos^2 \phi$$

▶Camera Orientation from Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

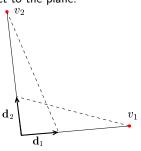
$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_i = (\mathbf{K}\mathbf{R})^{-1} \underline{\mathbf{v}}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_i}_{\underline{\mathbf{w}}_i}$$

$$\mathbf{Rd}_i \simeq \mathbf{w}_i$$

- ullet then $\underline{\mathbf{w}}_i/\|\underline{\mathbf{w}}_i\|$ is the i-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal:

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$$

$$\mathbf{R} = \begin{bmatrix} \frac{\mathbf{w}_1}{\|\mathbf{\underline{w}}_1\|} & \frac{\mathbf{w}_2}{\|\mathbf{\underline{w}}_2\|} & \frac{\mathbf{w}_1 \times \mathbf{\underline{w}}_2}{\|\mathbf{\underline{w}}_1 \times \mathbf{\underline{w}}_2\|} \end{bmatrix}$$



some suitable scenes

Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

$$\underline{\mathbf{m}} \simeq \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

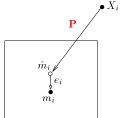
$$\underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K}(\mathbf{K}\mathbf{R})^{-1} \, \underline{\mathbf{m}} = \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1} \, \underline{\mathbf{m}} = \mathbf{H} \, \underline{\mathbf{m}}$$

- ullet $oldsymbol{H}$ is the rectifying homography
- ullet both K and R can be calibrated from two finite vanishing points
- not possible when one (or both) of them are infinite

▶Camera Resectioning

Camera calibration and orientation from a known set of $k \geq 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.

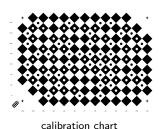


 X_i is considered exact m_i is a measurement $e_i^2 = \|\mathbf{m}_i - \hat{\mathbf{m}}_i\|^2$ where $\hat{\mathbf{m}}_i \simeq \mathbf{P} \mathbf{X}_i$

projection error

automatic calibration point detection

calibration target with translation stage



►The Minimal Problem for Resectioning

Problem: Given k=6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

$$\boldsymbol{\lambda}_{i}\underline{\mathbf{m}}_{i} = \mathbf{P}\underline{\mathbf{X}}_{i}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{q}_{1}^{\top} & q_{14} \\ \mathbf{q}_{2}^{\top} & q_{24} \\ \mathbf{q}_{3}^{\top} & q_{34} \end{bmatrix} \qquad \qquad \underline{\underline{\mathbf{X}}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k, \ k = 6 \\ \underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0$$
easy to modify for infinite points X_{i}

expanded: $\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$

eliminating λ gives: $(\mathbf{q}_3^{\top}\mathbf{X}_i + q_{34})u_i = \mathbf{q}_1^{\top}\mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^{\top}\mathbf{X}_i + q_{34})v_i = \mathbf{q}_2^{\top}\mathbf{X}_i + q_{24}$

Then

$$\mathbf{A} \mathbf{q} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ q_{14} \\ \mathbf{q}_{2} \\ q_{24} \\ \mathbf{q}_{3} \\ q_{34} \end{bmatrix} = \mathbf{0}$$
(8)

- we need 11 indepedent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- ullet 6 points in a general position give ${
 m rank}\,{f A}=12$ and there is no non-trivial null space
- drop one row to get rank 11 matrix, then the basis of the null space of A gives q

▶ The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in data?

Jack-knife estimation

- 1. n := 0
- 2. for i = 1, 2, ..., 2k do
 - a. delete i-th row from A, this gives A_i
 - **b.** if dim null $\mathbf{A}_i > 1$ continue with the next i
 - c. n := n + 1
 - d. compute the right null-space \mathbf{q}_i of \mathbf{A}_i
 - e. normalize \mathbf{q}_i to $\hat{\mathbf{q}}_i = \mathbf{q}_i/q_{12}$

see Slide 67

e.g. by 'economy-size' SVD this assumes finite camera with $P_{3,3}=1\,$

3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 1d compute

$$\mathbf{q} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_i, \quad \text{var}[\mathbf{q}] = \frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n} (\hat{\mathbf{q}}_i - \mathbf{q}) (\hat{\mathbf{q}}_i - \mathbf{q})^{\top}$$

- have a solution + an error estimate, per individual elements of ${f P}$
- have a solution + an error estimate, per individual elements of F
 at least 5 points must be in a general position
- large error indicates near degeneracy
- computation not efficient with k>6 points, needs $\binom{2k}{11}$ draws, e.g. $k=7\to364$ draws
- one needs $k \geq 7$ for the full covariance matrix
- better error estimation method: decompose P_i to K_i , R_i , t_i (Slide 30), represent R_i with 3 parameters (e.g. Euler angles, or in Cayley representation, see Slide 144) and compute the errors for the parameters

▶Degenerate (Critical) Configurations for Resectioning

Let $\mathcal{X}=\{X_i;\ i=1,\ldots\}$ be a set of points and $\mathbf{P}_1\not\simeq\mathbf{P}_2$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1,\mathcal{X})$ and $(\mathbf{P}_2,\mathcal{X})$ are image-equivalent if

$$C$$
 C_2
 C_2
 C_2
 C_2
 C_2

$$\mathbf{P}_1 \underline{\mathbf{X}}_i \simeq \mathbf{P}_2 \underline{\mathbf{X}}_i$$
 for all $X_i \in \mathcal{X}$

• if all calibration points $X_i \in \mathcal{X}$ lie on a plane \varkappa the camera resectioning is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_\infty = \varkappa \cap \mathcal{C}$ excluded

this also means we cannot resect if all X_i are infinite

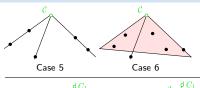
- by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

see proof sketch in the notes or in [H&Z, Sec. 22.1.2]

Note that if ${\bf Q}$, ${\bf T}$ are suitable non-singular homographies then ${\bf P}_1\simeq {\bf QP}_0{\bf T}$, where ${\bf P}_0$ is canonical and

$$\mathbf{P}_0 \underbrace{\mathbf{T} \underline{\mathbf{X}}_i}_{\underline{\mathbf{Y}}_i} \simeq \mathbf{P}_2 \underbrace{\mathbf{T} \underline{\mathbf{X}}_i}_{\underline{\mathbf{Y}}_i} \quad \text{for all} \quad Y_i \in \mathcal{Y}$$

cont'd (all cases)



- cameras C_1 , C_2 co-located at point \mathcal{C} points on three optical rays or one optical ray and one optical plane
- Case 5: we see 3 isolated point images • Case 6: we see a line of points and an isolated point
- C_{∞} Case 3 Case 4
- points lie on C and
 - 1. on two lines meeting \mathcal{C} at C_{∞} , C_{∞}' 2. or on a plane meeting C at C_{∞}

• cameras lie on a planar conic $\mathcal{C} \setminus \{C_{\infty}\}$

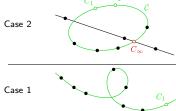
• cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C_{\infty}'\}$

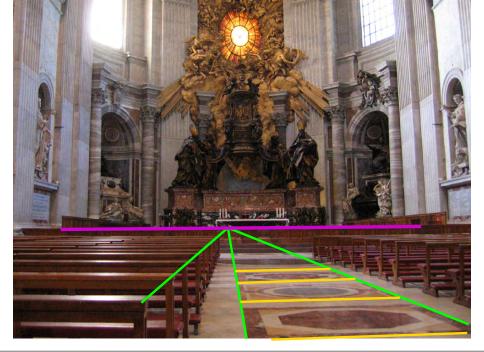
- Case 3: we see 2 lines of points
- - points lie on $\mathcal C$ and an additional line meeting the

not necessarily an ellipse

- Case 2: we see 2 lines of points
- cameras and points all lie on a twisted cubic $\mathcal C$ Case 1: we see a conic

conic at C_{∞}





3D Computer Vision: enlarged figures

