Part Ill

Computing with a Single Camera

@ Calibration: Internal Camera Parameters from Vanishing Points and Lines
@ Resectioning: Projection Matrix from 6 Known Points
© Exterior Orientation: Camera Rotation and Translation from 3 Known Points

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381-395, 1981

[3] [Golub & van Loan 1996, Sec. 2.5]
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Obtaining Vanishing Points and Lines

e orthogonal pairs can be collected from more images by camera rotation

e vanishing line can be obtained without vanishing points (see Slide 46)
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»Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d; =Q 'vi, i=1,2,3 Slide 33
pi; =Q'mij, 4,j=1,2,3 i%#j Slide36

Constraints
1. orthogonal rays di L d2 in space then
0=dids=viQ 'Q 'va=v{ (KK') 'vo
——

2. orthogonal planes p;; L pix in spacew ("9

T T T T
0=pi;pik =10 QQ 'nix =n;w 'np

U1
3. orthogonal ray and plane d, || pij, k # 4, ] normal parallel to optical ray

pi~di = Q'n;=)Q 'vi = n;=)Q 'Q 'vi =) ww, A#0

® n;; may be constructed from non-orthogonal v; and v;, e.g. using the cross-ratio

® w is a symmetric, positive definite 3 X 3 matrix IAC = Image of Absolute Conic
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»cont’'d

condition constraint # constraints
(2) orthogonal v.p. Vi wy; =0 1
(3) orthogonal v.. n)w 'ng =0 1
(4) v.p. orthogonal to v.l. n;; = \wvy 2
(5) orthogonal raster 6 = /2 wiz = w21 =0 1
(6) unit aspect a =1 when § = 7/2 w11 = was 1
(7) known principal point ugp = v9 =0 w13 = w31 = w23 = w32 =0 2

e these are homogeneous linear equations for the 5 parameters in w in the form Dw = 0
A can be eliminated from (4)
we will come to solving overdetermined homogeneous equations later — Slide 97

e we need at least 5 constraints for full K

e we get K from w ™! = KK by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix
one avoids solving a set of quadratic equations for the parameters in K
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= K= {{f, s, uf01}, {0, a=f, v[0]}, {O, O, 1}};
K // MatrixForm

out[2)//MatrixForm:
f s u[0]
0 af v[O]
00 1

n4= w = Inverse[K. Transpose[K]] % Det [K]"2;
w //Sinplify // MatrixForm
out[5)//MatrixForm:
azf? -afs
_afs f2 .52

mel= w/fr2 /. s 0 //Sinplify // MatrixForm
out[8)//MatrixForm=
a? 0 ~a2u[0]
0 1 -v[0]
-a?u[0] -v[0] a% (f2+u[0]?) +v[0]?

nio= @ /. {u[0] » 0, v[0] » 0} // MatrixForm

a’?f?2 -afs 0
-~afs f2+s2 0
0 0 aZf4

ni7= w /fA2 /7. {a->1, s->0}//Sinplify // MatrixForm

1

MatrixForm=

1 0 -u[0]
0 1 -v (0]
~u[0] -v[0] f2+u[0]2+v[0]2

af (-afu[0] +sv[0])
afsu[0]- (f2+s2)v(0]
af (-af u[0]+sv[0]) afsu[0]- (f2+s?)v[0] a®f2 (f2+u[0]?)-2af su[0]v[0]+ (f2+s?)v[0]?
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Examples

Ex 1:
Assuming known mg = (uo,vg), two finite orthogonal vanishing points suffice to get f
in this formula, v;, mg are not homogeneous!

f2=|(vi =mo)" (v2 — mo)|

Ex 2:

Non-orthogonal vanishing points v;, v;, known angle ¢: cos¢ =

e leads to polynomial equations

e e.g. assuming orthogonal raster, unit aspect (ORUA): a =1, 6 = 7/2

1 0 —Uuo
1
w = 72 0 1 —vo
—uo  —wvo  fEHud+od

e ORUA and up = vo = 0 gives

(2 Vi) = (P vill®) - (7 + (lvs)?) - cos” ¢
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»Camera Orientation from Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal
directions di, d2, compute camera orientation R with respect to the plane.

e coordinate system choice, e.g.:

d; = (1,0,0), ds=(0,1,0)

e we know that

Z

di~Q 'vi=(KR) 'vi=R 'Ky,
N——

Rdi ~ W;

o then w;/||w;|| is the i—th column r; of R

some suitable scenes

e the third column is orthogonal:
rs =1r1 XTI2

R = [ w1 w2 Wi XW2 ]

will llwall  llwi xXwal|
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Application: Planar Rectification

Principle: Rotate camera parallel to the plane of interest.

m~KR[I -C]X m ~K[I -C|X
m ~K(KR) 'm=KR'K 'm=Hm

e H is the rectifying homography
e both K and R can be calibrated from two finite vanishing points

e not possible when one (or both) of them are infinite
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»Camera Resectioning

Camera calibration and orientation from a known set of k > 6 reference points and their
images {(X;,m:)}5_;.
X;

X; is considered exact

/ m; is a measurement
it e = [[m; — iy 2

where m; ~ PX;

projection error calibration target with translation stage

automatic calibration point detection calibration chart
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» The Minimal Problem for Resectioning

Problem: Given k = 6 corresponding pairs {(Xi, mi)}le, find P
al qu Xi = (zi,yi,2,1), i=1,2,....k k=6

m; = PX; P=|a ¢
Aim; A, qQT q24 m; = (Uz‘,’Ui, 1)’ \i € R, A\ 7& 0
q3  gs34
easy to modify for infinite points X;

expanded: Nts = qf X +qua, ANvi =q3 X +qoa, A =q4 Xi + gsa
eliminating \ gives: (q;XZ + q3a)u; = qlTXi + q14, (quXZ + g3a)v; = q;Xi + qo4

Then
X;r 1 OT 0 —’l,Ll)(lT —Uu1 q1
o' 0 X{ 1 —uX/ -u q14
Ag=| : e ;1; =0 (8)
X, 1 07 0 —uX] —us as
0" 0 X! 1 —uwuX{ —wl |gu
o we need 11 indepedent parameters for P
e AcC RQk’12, q¢€ R12
® 6 points in a general position give rank A = 12 and there is no non-trivial null space
e drop one row to get rank 11 matrix, then the basis of the null space of A gives q
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» The Jack-Knife Solution for k£ = 6

e given the 6 correspondences, we have 12 equations for the 11 parameters
e can we use all the information present in data?

Jack-knife estimation
1. n:=0
2. fori=1,2,...,2k do

a. delete i-th row from A, this gives A;

b. if dimnull A; > 1 continue with the next ¢

c. ni=n+1

d. compute the right null-space q; of A; e.g. by ‘economy-size’ SVD
e. normalize q; to q; = q;/q12 this assumes finite camera with P3 3 = 1

3. from all n vectors q; collected in Step 1d compute
1o~ n—1_. <x=. X T
a=_-> @,  varfg] = ———diagy (& —a)(a —q)
i=1 i—1

have a solution + an error estimate, per individual elements of P

at least 5 points must be in a general position see Slide 67
large error indicates near degeneracy

computation not efficient with & > 6 points, needs (?’f) draws, e.g. k =7 — 364 draws

one needs k > 7 for the full covariance matrix

better error estimation method: decompose P; to K;, R;, t; (Slide 30), represent R; with 3 parameters
(e.g. Euler angles, or in Cayley representation, see Slide 144) and compute the errors for the parameters
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»Degenerate (Critical) Configurations for Resectioning

Let X = {X;; i =1,...} be a set of points and P; % P3 be two regular (rank-3) cameras.
Then two configurations (P1,X’) and (P2, X’) are image-equivalent if

Pi1X; ~ P2X; forall X;eX

e if all calibration points X; € X’ lie on a plane ¢ the
camera resectioning is non-unique and all image-equivalent
camera centers lie on a spatial line C with the Coc = %N C
excluded

this also means we cannot resect if all X; are infinite

e by adding points X; € X to C we gain nothing

e there are additional image-equivalent configurations, see
Case 4 next

see proof sketch in the notes or in [H&Z, Sec. 22.1.2]

Note that if Q, T are suitable non-singular homographies then P1 ~ QP(T, where Py is
canonical and
PyTX; 2P, TX; forall Y;e)y
—~— —~—
Y; Y;
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cont'd (all cases)

e cameras (1, ('y co-located at point C

points on three optical rays or one optical ray
and one optical plane

® Case 5: we see 3 isolated point images

Case 6

® Case 6: we see a line of points and an isolated point

Case 4

cameras lie on a line C\ {C,C._}
points lie on C and
1. on two lines meeting C at Co, CL

2. or on a plane meeting C at C

Case 3: we see 2 lines of points

Case 2

cameras lie on a planar conic C \ {Cc }

not necessarily an ellipse
points lie on C and an additional line meeting the
conic at O

Case 2: we see 2 lines of points

Case 1

cameras and points all lie on a twisted cubic C

Case 1: we see a conic
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Thank You
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