►1D Projective Coordinates

The 1-D projective coordinate of a point P:

Applications

- Given the image of a line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined \rightarrow see Slide 45
- Finding v.p. of a line through a regular object

 \rightarrow see Slide 46

Application: Counting Steps

• Namesti Miru underground station in Prague

detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps)

4Mpx camera

Application: Finding the Horizon from Repetitions

in 3D: $|P_0P| = 2|P_0P_I|$ then [H&Z, p. 218] \oplus P1; 1pt: How high is the camera above the floor?

$$[P_{\infty}P_0P_IP] = \frac{|P_0P|}{|P_0P_I|} = 2 \quad \Rightarrow \quad |p_{\infty}p_0| = \frac{|p_0p_I| \cdot |p_0p|}{|p_0p| - 2|p_0p_I|}$$

• could be applied to counting steps (Slide 45)

3D Computer Vision: II. Perspective Camera (p. 46/196) の ゆや

Homework Problem

 \circledast H2; 3pt: What is the ratio of heights of Building A to Building B?

- expected: conceptual solution
- deadline: +2 weeks

n_{∞} x_B o_B o_A o_A o_A o_A o_A o_B o_A o_B o_A o_B o_B o_A o_B o_B

Hints

- 1. what are the properties of line h connecting the top of Building B with the point m at which the horizon is intersected with the line p joining the foots of both buildings? [1 point]
- 2. how do we actually get the horizon n_{∞} ? [1 point] (we do not see it directly, there are hills there)
- 3. what tool measures the length? [formula = 1 point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration

because we see the calibrating object (vanishing points)

▶ Real Camera with Radial Distortion

an extreme case of radial distortion

image undistorted by division model

distortion types

► The Radial Distortion Mapping

- y_0 center of radial distortion (usually principal point)
- y_L linearly projected point
- y_R radially distorted point
- radial distortion r maps y_L to y_R along the radial direction
- magnitude of the transfer depends on the radius $\|y_L y_0\|$ only

- circles centered at y_0 map to centered circles, lines incident on y_0 map on themselves
- the mapping r() can be scaled to a r() so that a particular circle C_n does not scale

• choose boundary point that preserves all image content within the same image size

► Radial Distortion Models

- let $\mathbf{z} = \mathbf{y} \mathbf{y}_0$ non-homogeneous
- we have $\mathbf{z}_R = r(\mathbf{z}_L)$ \mathbf{z}_L linear, \mathbf{z}_R distorted
- but are often interested in $\mathbf{z}_L = r^{-1}(\mathbf{z}_R)$

•
$$\mathbf{y}_n$$
 – a no-distortion point on C_n : $r(\mathbf{y}_n) = \mathbf{y}_n$

•
$$\mathbf{z}_n = \mathbf{y}_n - \mathbf{y}_0$$

Division Model single parameter $-1 \le \lambda < 1$, has an analytic inverse, models even some fish-eye lenses

$$\mathbf{z}_R = \frac{\hat{\mathbf{z}}}{1 + \sqrt{1 + \lambda \frac{\|\hat{\mathbf{z}}\|^2}{\|\mathbf{z}_n\|^2}}}, \quad \text{where } \hat{\mathbf{z}} = \frac{2 \, \mathbf{z}_L}{1 - \lambda} \quad \text{and} \quad \mathbf{z}_L = \frac{1 - \lambda}{1 - \lambda \frac{\|\mathbf{z}_R\|^2}{\|\mathbf{z}_n\|^2}} \, \mathbf{z}_R$$

 $\lambda > 0$ – barrel distortion, $\lambda < 0$ – pincushion distortion

Polynomial Model better fit for $n \ge 3$, no analytic inverse, may loose monotonicity, hard to calibrate

$$\mathbf{z}_{L} = \frac{D(\mathbf{z}_{R}; \mathbf{z}_{n}, \mathbf{k})}{1 + \sum_{i=1}^{n} k_{i}} \, \mathbf{z}_{R}, \quad D(\mathbf{z}_{R}; \mathbf{z}_{n}, \mathbf{k}) = 1 + k_{1}\rho^{2} + k_{2}\rho^{4} + \dots + k_{n}\rho^{2n}, \ \rho = \frac{\|\mathbf{z}_{R}\|}{\|\mathbf{z}_{n}\|}, \ \mathbf{k} = (k_{i})$$

e.g. $k_i \ge 0$ – barrel distortion, $k_i \le 0$ – pincusion distortion, $i = 1, \ldots, n$ Zernike polynomials R_i^0 are a better choice: $R_2^0(\rho) = 2\rho^2 - 1, R_4^0(\rho) = 6\rho^4 - 6\rho^2 + 1, R_6^0(\rho) = \cdots$

3D Computer Vision: II. Perspective Camera (p. 52/196) かみや

▶ Real and Linear Camera Models

Notes

- assumption: the principal point and the center of radial distortion coincide
- f included in \mathbf{K}_0 to make radial distortion independent of focal length
- A makes radial lens distortion an elliptic image distortion
- it suffices in practice that r^{-1} is an analytic function (r need not be)

Calibrating Radial Distortion

- radial distortion calibration includes at least 5 parameters: λ, u_0, v_0, s, a
- 1. detect a set of straight line segment images $\{s_i\}_{i=1}^n$ from a calibration target
- 2. select a suitable set of k measurement points per segment how to select k?

k = 2

 y_0

3. define invariant radial transfer error per measurement point $e_{i,j}$ and per segment $e_i^2 = \sum_{j=1}^{k-2} e_{i,j}^2$ invariant

invariant to rotation, translation

- 4. minimize total radial transfer error: $\arg \min_{\lambda, u_0, v_0, s, a} \sum_{i=1}^{\infty} e_i^2$
 - line segments from real-world images requires segmentation to inliers/outliers

inliers = lines that are straight in reality

marginalisation over the hidden label gives a 'robust' error, e.g.

$$\varepsilon_i^2 = -\log\left(e^{-\frac{e_i^2}{2\sigma^2}} + t\right), \qquad t > 0$$

direct optimization usually suffices but in general such optimization is unstable

3D Computer Vision: II. Perspective Camera (p. 54/196) のへや

Example Calibrations

Low-resolution (VGA) wide field-of-view (130°) camera

4 Mpix consumer camera

 radial distortion is slightly dependend on focal length

3D Computer Vision: II. Perspective Camera (p. 55/196) つへや

Thank You

Camera 0, im. 6: Reprojection errors (16x)

