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Part II

Perspective Camera

1 Basic Entities: Points, Lines

2 Homography: Mapping Acting on Points and Lines

3 Canonical Perspective Camera

4 Changing the Outer and Inner Reference Frames

5 Projection Matrix Decomposition

6 Anatomy of Linear Perspective Camera

7 Vanishing Points and Lines

8 Real Camera with Radial Distortion

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, 7.4, Example: 2.19
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IBasic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, ϕ

• associated vector representations

m =

[
u
v

]
= [u, v]>, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn,1

• associated homogeneous representations

m= [m1,m2,m3]
>, X= [x1, x2, x3, x4]

>, n

‘in-line’ forms: m= (m1,m2,m3), X= (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm,n
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IImage Line

line in the plane a u+ b v + c = 0

corresponds to (homogeneous) vector n ' (a, b, c)

and the equivalence class for λ ∈ R, λ 6= 0 (λa, λb, λc) ' (a, b, c)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2

a set of rays

• standard representation for finite n= (n1, n2, n3) is λn, where λ = 111√
n2

1+n
2
2

assuming n2
1 + n2

2 6= 0; 111 is the unit, usually 111 = 1

• naming convention: a special entity is the Ideal Line (line at infinity)

n∞ ' (0, 0, 1)

• I may sometimes worngly use = instead of ', help me chase the mistakes down
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IImage Point

Point m = (u, v) is incident on the line n= (a, b, c) iff this works both ways!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m>n= 0

point is also represented by a homogeneous vector m' (u, v,111)

and the equivalence class for λ ∈ R, λ 6= 0 is (m1, m2, m3) = λm'm

• standard representation for finite point m is λm, where λ = 111
m3

assuming m3 6= 0

• when 111 = 1 then units are pixels and λm= (u, v, 1)

• when 111 = f then all components have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

• naming convention: Ideal Point (point at infinity) m∞ ' (m1,m2, 0)
a proper member of P2

• all such points lie on the ideal line n∞ ' (0, 0, 1), ie. m>∞ n∞ = 0
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ILine Intersection and Point Join

The point of intersection m of image lines n and n′, n 6' n′ is

m' n× n′

n′

n

m

proof: If m= n× n′ is the intersection point, it
must be incident on both lines. Indeed,

n> (n× n′)︸ ︷︷ ︸
m

≡ n′> (n× n′)︸ ︷︷ ︸
m

= 0

The join n of two image points m and m′, m 6' m′ is

n'm×m′

Paralel lines intersect at the line at infinity n∞ ' (0, 0, 1)

au+ b v + c = 0,

a u+ b v + d = 0, d 6= c

(a, b, c)× (a, b, d) ' (b,−a, 0)

• all such intersections lie on the ideal line n∞

• line at infinity represents a set of directions in plane
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IHomography

Projective space P2: Vector space of dimension 3 excluding the zero vector, R3 \ (0, 0, 0)
but including ‘points at infinity’ and the ‘line at infinity’

Collineation: Let x1, x2, x3 be collinear points in P2. Bijection (1:1, onto) h : P2 7→ P2 is
a collineation iff h(x1), h(x2), h(x3) are collinear.

i.e.

• collinear image points are mapped to collinear image points lines are mapped to lines

• concurrent image lines are mapped to concurrent image lines bijection!

concurrent = intersecting at the same point
• point-line incidence is preserved

• a mapping h : P2 → P2 is a collineation iff there exists a non-singular 3× 3 matrix H
such that

h(x) ' Hx for all x ∈ P2

• homogeneous matrix representant: detH = 1

• collineations form a group isomorphic to SO(3)

group of 3× 3 matrices with unit determinant and with matrix multiplication

• in this course we will use the term homography but mean collineation
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IMapping Points and Lines by Homography

H−⊤

H

m′ ' Hm image point

n′ ' H−>n image line

• incidence is preserved: (m′)>n′ 'm>H>H−>n= m>n= 0

1. collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position

2. extending pixel coordinates to homogeneous coordinates m= (u, v,111)

3. mapping by homography, eg. m′ = Hm

4. conversion of the result m′ = (m′1,m
′
2,m

′
3) to canonical coordinates (pixels):

u′ =
m′1
m′3

111, v′ =
m′2
m′3

111

5. can use the unity for the homogeneous coordinate on one side of the equation only!
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Elementary Decomposition of a Homography

Unique decompositions: A = AS AAAP (= A′P A′AA′S)

AS =

[
sR t

0> 1

]
similarity

AA =

[
K 0

0> 1

]
special affine

AP =

[
I 0

v> w

]
special projective

K – upper triangular matrix with positive diagonal entries
R – orthogonal, R>R = I, detR = 1
s, w ∈ R, s > 0, w 6= 0

A =

[
sRK+ t v> w t

v> w

]
• must use ‘skinny’ QR decomposition, which is unique [Golub & van Loan 1996, Sec. 5.2.6]

• AS , AA, AP are collineation subgroups

(eg. K = K1K2, K−1, I are all upper triangular with unit determinant, associativity holds)

3D Computer Vision: II. Perspective Camera (p. 22/196) R. Šára, CMP; rev. 18–Sep–2012



Homography Subgroups

group DOF matrix invariant properties

projective 8

h11 h12 h13

h21 h22 h23

h31 h32 h33

 incidence, concurrency, colinearity,
cross-ratio, convex hull, order of
contact (intersection, tangency,
inflection), tangent discontinuities and
cusps.

affine 6

a11 a12 tx
a21 a22 ty
0 0 1

 all above plus: parallelism, ratio of
areas, ratio of lengths on parallel lines,
linear combinations of vectors (e.g.
midpoints), line at infinity n∞ (not
pointwise)

similarity 4

 s cosφ s sinφ tx
−s sinφ s cosφ ty

0 0 1

 all above plus: ratio of lengths, angle,
the circular points I = (1, i, 0),
J = (1,−i, 0).

Euclidean 3

 cosφ sinφ tx
− sinφ cosφ ty

0 0 1

 all above plus: length, area
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Some Homographic Tasters

Rectification of camera rotation: Slides 60 (geometry), 122 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry
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ICanonical Perspective Camera (Pinhole Camera, Camera Obscura)

C z (x0; y0; 1) Ox �
(x; y; z)

xpy
1. right-handed canonical coordinate system

(x, y, z)

2. origin = center of projection C

3. image plane π at unit distance from C

4. optical axis O is perpendicular to π

5. principal point xp: intersection of O and π

6. in this picture we are looking ‘down the street’

7. perspective camera is given by C and π

Oyy y0�C z � 11 X
projected point in the natural image
coordinate system:

y′

1
= y′ =

y

1 + z − 1
=
y

z
, x′ =

x

z
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INatural and Canonical Image Coordinate Systems

projected point in canonical camera[
x′ y′ 1

]>
=
[
x
z
, y

z
, 1

]>
=

1

z

[
x, y, z

]> '
1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P0

·


x
y
z
1

 = P0 X

projected point in scanned image notice the chimney!

xp = (u0; v0) (u; v)
(0; 0) uv C z (x0; y0; 1) Ox �

(x; y; z)
xpy

u = f
x

z
+ u0

v = f
y

z
+ v0

1

z

f x+ z u0

f y + z v0
z

 '
f 0 u0

0 f v0
0 0 1

·
1 0 0 0
0 1 0 0
0 0 1 0

·

x
y
z
1

 = KP0 X= PX

• ‘calibration’ matrix K transforms canonical camera P0 to standard projective camera P
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