\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. December 18, 2012

Open Informatics Master's Course

Part II

Perspective Camera

(1) Basic Entities: Points, Lines
(2) Homography: Mapping Acting on Points and Lines
(3) Canonical Perspective Camera
(4) Changing the Outer and Inner Reference Frames
(5) Projection Matrix Decomposition
(6) Anatomy of Linear Perspective Camera
(7) Vanishing Points and Lines
(8) Real Camera with Radial Distortion
covered by
[H\&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, 7.4, Example: 2.19

Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	$m=(u, v)$	$X=(x, y, z)$
line	n	O
plane		π, φ

- associated vector representations

$$
\mathbf{m}=\left[\begin{array}{l}
u \\
v
\end{array}\right]=[u, v]^{\top}, \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{n}
$$

will also be written in an 'in-line' form as $\mathbf{m}=(u, v), \mathbf{X}=(x, y, z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n, 1}$
- associated homogeneous representations

$$
\begin{aligned}
& \underline{\mathbf{m}}=\left[m_{1}, m_{2}, m_{3}\right]^{\top}, \quad \underline{\mathbf{X}}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top}, \quad \underline{\mathbf{n}} \\
& \text { 'in-line' forms: } \underline{\mathbf{m}}=\left(m_{1}, m_{2}, m_{3}\right), \underline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \text { etc. }
\end{aligned}
$$

- matrices are $\mathbf{Q} \in \mathbb{R}^{m, n}$

- Image Line

line in the plane

$$
a u+b v+c=0
$$

corresponds to (homogeneous) vector

$$
\underline{\mathbf{n}} \simeq(a, b, c)
$$

and the equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0 \quad(\lambda a, \lambda b, \lambda c) \simeq(a, b, c)$

- the set of equivalence classes of vectors in $\mathbb{R}^{3} \backslash(0,0,0)$ forms the projective space \mathbb{P}^{2} a set of rays
- standard representation for finite $\underline{\mathbf{n}}=\left(n_{1}, n_{2}, n_{3}\right)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda=\frac{\mathbf{1}}{\sqrt{n_{1}^{2}+n_{2}^{2}}}$ assuming $n_{1}^{2}+n_{2}^{2} \neq 0 ; \mathbf{1}$ is the unit, usually $\mathbf{1}=1$
- naming convention: a special entity is the Ideal Line (line at infinity)

$$
\underline{\mathbf{n}}_{\infty} \simeq(0,0,1)
$$

- I may sometimes worngly use $=$ instead of \simeq, help me chase the mistakes down

- Image Point

Point $\mathbf{m}=(u, v)$ is incident on the line $\underline{\mathbf{n}}=(a, b, c)$ iff
this works both ways!

$$
a u+b v+c=0
$$

can be rewritten as (with scalar product):

$$
(u, v, \mathbf{1}) \cdot(a, b, c)=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0
$$

point is also represented by a homogeneous vector

$$
\underline{\mathbf{m}} \simeq(u, v, \mathbf{1})
$$

and the equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0 \quad$ is $\quad\left(m_{1}, m_{2}, m_{3}\right)=\lambda \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$

- standard representation for finite point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda=\frac{\mathbf{1}}{m_{3}} \quad$ assuming $m_{3} \neq 0$
- when $\mathbf{1}=1$ then units are pixels and $\lambda \underline{\mathbf{m}}=(u, v, 1)$
- when $\mathbf{1}=f$ then all components have a similar magnitude, $f \sim$ image diagonal use $1=1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units
- naming convention: Ideal Point (point at infinity) $\underline{\mathbf{m}}_{\infty} \simeq\left(m_{1}, m_{2}, 0\right)$
a proper member of \mathbb{P}^{2}
- all such points lie on the ideal line $\quad \underline{\mathbf{n}}_{\infty} \simeq(0,0,1)$, ie. $\underline{\mathbf{m}}_{\infty}^{\top} \underline{\mathbf{n}}_{\infty}=0$

Line Intersection and Point Join

The point of intersection m of image lines n and $n^{\prime}, n \nsucceq n^{\prime}$ is
$\underline{\mathbf{m}} \simeq \underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}$

proof：If $\underline{\mathbf{m}}=\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}$ is the intersection point，it must be incident on both lines．Indeed，

The join n of two image points m and $m^{\prime}, m \not 千 m^{\prime}$ is

$$
\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}
$$

Paralel lines intersect at the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq(0,0,1)$

$$
\begin{aligned}
& a u+b v+c=0, \\
& a u+b v+d=0, \\
& \quad(a, b, c) \times(a, b, d) \simeq(b,-a, 0)
\end{aligned}
$$

－all such intersections lie on the ideal line $\underline{\mathbf{n}}_{\infty}$
－line at infinity represents a set of directions in plane

-Homography

Projective space \mathbb{P}^{2} : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^{3} \backslash(0,0,0)$ but including 'points at infinity' and the 'line at infinity'
Collineation: Let x_{1}, x_{2}, x_{3} be collinear points in \mathbb{P}^{2}. Bijection (1:1, onto) $h: \mathbb{P}^{2} \mapsto \mathbb{P}^{2}$ is a collineation iff $h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right)$ are collinear.
i.e.

- collinear image points are mapped to collinear image points lines are mapped to lines
- concurrent image lines are mapped to concurrent image lines bijection! concurrent $=$ intersecting at the same point
- point-line incidence is preserved
- a mapping $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a collineation iff there exists a non-singular 3×3 matrix \mathbf{H} such that

$$
h(x) \simeq \mathbf{H} \underline{\mathbf{x}} \quad \text { for all } \underline{\mathbf{x}} \in \mathbb{P}^{2}
$$

- homogeneous matrix representant: $\operatorname{det} \mathbf{H}=1$
- collineations form a group isomorphic to $S O(3)$
group of 3×3 matrices with unit determinant and with matrix multiplication
- in this course we will use the term homography but mean collineation

- Mapping Points and Lines by Homography

$$
\begin{aligned}
\underline{\mathbf{m}}^{\prime} & \simeq \mathbf{H} \underline{\mathbf{m}} & & \text { image point } \\
\underline{\mathbf{n}}^{\prime} & \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & & \text { image line }
\end{aligned} \quad \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
$$

- incidence is preserved: $\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

1. collineation has 8 DOF; it is given by 4 correspondences (points, lines) in a general position
2. extending pixel coordinates to homogeneous coordinates $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
3. mapping by homography, eg. $\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}}$
4. conversion of the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ to canonical coordinates (pixels):

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

5. can use the unity for the homogeneous coordinate on one side of the equation only!

Elementary Decomposition of a Homography

Unique decompositions: $\quad \mathbf{A}=\mathbf{A}_{S} \mathbf{A}_{A} \mathbf{A}_{P} \quad\left(=\mathbf{A}_{P}^{\prime} \mathbf{A}_{A}^{\prime} \mathbf{A}_{S}^{\prime}\right)$

$$
\begin{aligned}
\mathbf{A}_{S} & =\left[\begin{array}{ll}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
\mathbf{A}_{A} & =\left[\begin{array}{ll}
\mathbf{K} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
\mathbf{A}_{P} & =\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{v}^{\top} & w
\end{array}\right]
\end{aligned}
$$

similarity
special affine
special projective
\mathbf{K} - upper triangular matrix with positive diagonal entries
\mathbf{R} - orthogonal, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=1$
$s, w \in \mathbb{R}, s>0, w \neq 0$

$$
\mathbf{A}=\left[\begin{array}{cc}
s \mathbf{R K}+\mathbf{t} \mathbf{v}^{\top} & w \mathbf{t} \\
\mathbf{v}^{\top} & w
\end{array}\right]
$$

- must use 'skinny' QR decomposition, which is unique [Golub \& van Loan 1996, Sec. 5.2.6]
- $\mathbf{A}_{S}, \mathbf{A}_{A}, \mathbf{A}_{P}$ are collineation subgroups
(eg. $\mathbf{K}=\mathbf{K}_{1} \mathbf{K}_{2}, \mathbf{K}^{-1}, \mathbf{I}$ are all upper triangular with unit determinant, associativity holds)

Homography Subgroups

group	DOF	matrix
projective	8	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$

Some Homographic Tasters

Rectification of camera rotation: Slides 63 (geometry), 120 (homography estimation)

Homographic Mouse for Visual Odometry: Slide TBD

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

4. optical axis O is perpendicular to π
5. principal point x_{p} : intersection of O and π
projected point in the natural image coordinate system:

6 . in this picture we are looking 'down the street'
7. perspective camera is given by C and π

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

- Natural and Canonical Image Coordinate Systems

$$
\begin{aligned}
& \text { projected point in canonical camera } \\
& \qquad\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]^{\top}=\left[\begin{array}{lll}
\frac{x}{z}, & \frac{y}{z}, & 1
\end{array}\right]^{\top}=\frac{1}{z}\left[\begin{array}{lll}
x, & y, & z
\end{array}\right]^{\top} \simeq \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}} \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
\end{aligned}
$$

projected point in scanned image notice the chimney!

$u=f \frac{x}{z}+u_{0} \quad \begin{gathered}\frac{1}{z}\left[\begin{array}{c}f x+z u_{0} \\ f y+z v_{0} \\ z\end{array}\right] \simeq\left[\begin{array}{ccc}f & 0 & u_{0} \\ 0 & f & v_{0} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\mathbf{K P}_{0} \underline{\mathbf{X}}=\mathbf{P} \underline{\mathbf{X}} \mathbf{x}\end{gathered}$

- 'calibration' matrix \mathbf{K} transforms canonical camera \mathbf{P}_{0} to standard projective camera \mathbf{P}

Computing with Perspective Camera Projection Matrix

$$
\begin{gathered}
\underline{\mathbf{m}}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \simeq\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right] \\
\frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad \text { when } m_{3} \neq 0
\end{gathered}
$$

f - 'focal length' - converts length ratios to pixels, $[f]=\mathrm{px}, f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z / f$ since $\underline{\mathbf{m}} \simeq(x, y, z / f)$ for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane $\pi \quad(z=0)$

Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

R - camera rotation matrix
t - camera translation vector

world orientation in the camera coordinate frame world origin in the camera coordinate frame

$$
\mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0} \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \underline{\mathbf{X}}_{w}
$$

\mathbf{P}_{0} selects the first 3 rows of \mathbf{T} and discards the last row

- \mathbf{R} is rotation, $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components
- alternative, often used, camera representations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

\mathbf{C}
\mathbf{r}_{3}^{\top} - camera position in the world reference frame
third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{-1}[0,0,1]^{\top}$

- we can save some conversion and computation by noting that $\mathbf{K R}[\mathbf{I} \quad-\mathbf{C}] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- digitization raster skew angle θ
- pixel aspect ratio a

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
$$

$\circledast \mathrm{H} 1 ; 2$ pt: Verify this \mathbf{K}; hints: $u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u \mathbf{e}_{u}+v \mathbf{e}_{v}$, boldface are basis vectors, \mathbf{K} maps from an orthogonal system to a skewed system $\left[w^{\prime} u^{\prime}, w^{\prime} v^{\prime}, w^{\prime}\right]^{\top}=\mathbf{K}[u, v, 1]^{\top}$; first skew then sampling then shift by u_{0}, v_{0} deadline LD +2 wk
general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

a recipe for filling \mathbf{P}

Representation Theorem: The set of projection matrices \mathbf{P} of finite projective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left hand 3×3 submatrix \mathbf{Q} non-singular.

-Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\begin{aligned} \mathbf{Q} & \in \mathbb{R}^{3,3} \\ \mathbf{K} & \in \mathbb{R}^{3,3}\end{aligned}$
$\mathbf{R} \in \mathbb{R}^{3,3}$
full rank (if finite perspective cam.)
upper triangular with positive diagonal entries
rotation: $\quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=+1$

1. $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}$ see next
2. $R Q$ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations [H\&Z, p. 579]

$$
\mathbf{K}=\mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}}
$$

3. $\mathbf{t}=-\mathbf{R C}$
$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g.

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{array}\right], \quad c^{2}+s^{2}=1, \quad \text { gives } \quad c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

\circledast P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors

- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive
'skinny' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 1996, sec. 5.2]

RQ Decomposition Step

```
Q=Array[q, {3, 3}];
R32 = {{1, 0, 0}, {0, c, s}, {0, -s, c}};
R32 // MatrixForm
```

```
( 1 0 0 % 0
```

Q1 = Q.R32;
Q1 // MatrixForm
s1 = Solve[\{Q1[[3]][[2]] = 0, $\left.\left.\mathrm{c}^{\wedge} 2+\mathrm{s}^{\wedge} 2=1\right\},\{c, s\}\right]$;
s1 = s1[[2]]
Q1 /. s1 // Simplify // MatrixForm

```
(q[1, 1] cq[1, 2]-sq[1,3] sq[1, 2] + cq[1, 3]}
q[2,1] cq[2,2]-sq[2,3] sq[2,2] +cq[2,3]
q[3,1] cq[3,2]-sq[3,3] sq[3,2]+cq[3,3]
```

$$
\left\{c \rightarrow \frac{q[3,3]}{\sqrt{q[3,2]^{2}+q[3,3]^{2}}}, s \rightarrow \frac{q[3,2]}{\sqrt{q[3,2]^{2}+q[3,3]^{2}}}\right\}
$$

```
(q[1, 1] -q[1,3)q[3,2]+q[1,2]q[3,3)
q[2,1] }\frac{-q[2,3]q(3,2]+q[2,2)q[3,3)}{\sqrt{q}{q[3,2\mp@subsup{]}{}{2}+q[3,3\mp@subsup{]}{}{2}}
q[3, 1] 0
```

$\frac{q(1,2] q[3,2]+q(1,3) q(3,3)}{\sqrt{q(3,2)^{2}+q(1,3,)^{2}}}$
$\left.\begin{array}{c}\sqrt{q[3,2]^{2}+q(3,3)^{2}} \\ \frac{q(2,2] q(3,2)+q(2,3 q}{}(3,3) \\ \sqrt{q(3,2)^{2}+q[3,3]^{2}} \\ \sqrt{q[3,2]^{2}+q[3,3]^{2}}\end{array}\right)$

-Center of Projection

Observation: finite \mathbf{P} has a non-trivial right null-space

Theorem

Let there be $\underline{\mathbf{B}} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}$. Then $\underline{\mathbf{B}}$ is equal to the projection center $\underline{\mathbf{C}}$ (in world coordinate frame).

Proof.

1. Consider spatial line $A B$ (B is given). We can write

$$
\underline{\mathbf{X}}(\lambda) \simeq \underline{\mathbf{A}}+\lambda \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. it images to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \mathbf{P} \underline{\mathbf{A}}+\lambda \mathbf{P} \underline{\mathbf{B}}=\mathbf{P} \underline{\mathbf{A}}
$$

- the whole line images to a single point \Rightarrow it must pass through the optical center of \mathbf{P}
- this holds for all choices of $A \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: C_homo = null(P); or C = -Q\q;

-Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. consider line (\mathbf{d} line direction vector, $\lambda \in \mathbb{R}$)

$$
\mathbf{X}=\mathbf{C}+\lambda \mathbf{d}
$$

2. the image of point X is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

- optical ray line corresponding to image point m is

$$
\mathbf{X}=\mathbf{C}+(\lambda \mathbf{Q})^{-1} \underline{\mathbf{m}}, \quad \lambda \in \mathbb{R}
$$

- optical ray may be represented by a point at infinity (d, 0)

-Optical Axis

Optical axis: The line through C that is perpendicular to image plane π

1. a line parallel to π images to line at infinity in π :

$$
\left[\begin{array}{c}
u \\
v \\
0
\end{array}\right] \simeq\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. point X in parallel to π iff $\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0$
3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector

4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

if $\mathbf{P} \mapsto \lambda \mathbf{P}$ then $\operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad$ and $\quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}$

－Principal Point

Principal point：The intersection of image plane and the optical axis
1．we take point at infinity on the optical axis that must project to principal point m_{0}

2．then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

－principal point is also the center of radial distortion（see Slide 50）

-Optical Plane

A spatial plane with normal p passing through optical center C and a given image line n.

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \mathbf{Q}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
see Slide 28
optical plane is given by $n: \quad \boldsymbol{\rho} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

Cross－Check：Optical Ray as Optical Plane Intersection

optical plane normal given by n
$\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
optical plane normal given by $n^{\prime} \quad \mathbf{p}^{\prime}=\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}$
$\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}$

-Summary: Optical Center, Ray, Axis, Plane

General finite camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$\underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P})$
$\mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}}$
$\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}$
Q q ${ }_{3}$

$$
\boldsymbol{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & -f \cot \theta & u_{0} \\
0 & f /(a \sin \theta) & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

R
t
optical center (world coords.) optical ray direction (world coords.) outward optical axis (world coords.) principal point (in image plane) optical plane (world coords.) camera (calibration) matrix $\left(f, u_{0}, v_{0}\right.$ in pixels) camera rotation matrix (cam coords.) camera translation vector (cam coords.)

What Can We Do with An 'Uncalibrated’ Perspective Camera?

How far is the engine?
distance between sleepers 0.806 m but we cannot count them, resolution is too low
We will review some life-saving theory...

- Vanishing Point

Vanishing point: the limit of the projection of a point that moves along a space line infinitely in one direction. the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty}=\lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots=\mathbf{Q} \mathbf{d}
$$

* P1; 1pt: Derive or prove
- V.P. is independent on line position, it depends on its orientation only
all parallel lines have the same V.P.
- the image of the V.P. of a spatial line with direction vector \mathbf{d} is $\underline{\mathbf{m}}=\mathbf{Q} \mathbf{d}$
- V.P. m corresponds to spatial direction $\mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}}$
optical ray through m
- V.P. is the image of a point at infinity on any line, not just the optical ray as on Slide 33

Some Vanishing Point Applications

where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

- Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes

- V.L. n corresponds to space plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
- a space plane of normal vector \mathbf{p} has a V.L. represented by $\underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

Cross Ratio

Four collinear space points R, S, T, U define cross-ratio

$$
[R S T U]=\frac{|R T|}{|R U|} \frac{|S U|}{|S T|}
$$

$|R T|$ - signed distance from R to T
(w.r.t. a fixed line orientation)
$[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]$

Obs: $\quad[R S T U]=\frac{|\underline{\mathbf{r}}, \underline{\mathbf{t}}, \underline{\mathbf{v}}|}{|\underline{\mathbf{r}}, \underline{\mathbf{u}}, \underline{\mathbf{v}}|} \cdot \frac{|\underline{\mathbf{s}}, \underline{\mathbf{u}}, \underline{\mathbf{v}}|}{|\underline{\mathbf{s}}, \underline{\mathbf{t}}, \underline{\mathbf{v}}|}, \quad|\underline{\mathbf{r}}, \underline{\mathbf{t}}, \underline{\mathbf{v}}|=\operatorname{det}[\underline{\mathbf{r}}, \underline{\mathbf{t}}, \underline{\mathbf{v}}]=(\underline{\mathbf{r}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}}$

Corollaries:

- cross ratio is invariant under collineations (homographies) $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}} \quad$ plug $\mathbf{H} \underline{x}$ in (1)
- cross ratio is invariant under perspective projection: $[R S T U]=[r s t u]$
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity

1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:
$[P]=\left[P_{\infty} P_{0} P_{I} P\right]=\left[p_{\infty} p_{0} p_{I} p\right]=\frac{\left|p_{\infty} p_{I}\right|}{\left|p_{0} p_{I}\right|} \frac{\left|p_{0} p\right|}{\left|p_{\infty} p\right|}$
P_{0} - the origin

$$
\left[P_{0}\right]=0
$$

P_{I} - the unit point

$$
\left[P_{I}\right]=1
$$

P_{∞} - the supporting point $\quad\left[P_{\infty}\right]= \pm \infty$
$[P]$ is equal to Euclidean coordinate along N
$[p]$ is its measurement in the image plane

Applications

- Given the image of a line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined $\quad \rightarrow$ see Slide 45
- Finding v.p. of a line through a regular object

Application: Counting Steps

- Namesti Miru underground station in Prague

detail around the vanishing point

Result: $[P]=214$ steps (correct answer is 216 steps)
4Mpx camera

Application: Finding the Horizon from Repetitions

in 3D: $\left|P_{0} P\right|=2\left|P_{0} P_{I}\right|$ then $[\mathrm{H} \& Z$, p. 218] $\circledast \mathrm{P} 1 ; 1$ pt: How high is the camera above the floor?

$$
\left[P_{\infty} P_{0} P_{I} P\right]=\frac{\left|P_{0} P\right|}{\left|P_{0} P_{I}\right|}=2 \quad \Rightarrow \quad\left|p_{\infty} p_{0}\right|=\frac{\left|p_{0} p_{I}\right| \cdot\left|p_{0} p\right|}{\left|p_{0} p\right|-2\left|p_{0} p_{I}\right|}
$$

- could be applied to counting steps (Slide 45)

Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building A to Building B ?

- expected: conceptual solution
- deadline: +2 weeks

Hints

1. what are the properties of line h connecting the top of Buiding \mathbf{B} with the point m at which the horizon is intersected with the line p joining the foots of both buildings? [1 point]
2. how do we actually get the horizon n_{∞} ? [1 point] (we do not see it directly, there are hills there)
3. what tool measures the length? [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we see the calibrating object (vanishing points)

Real Camera with Radial Distortion

image with no radial distortion

an extreme case of radial distortion

image undistorted by division model
distortion types

none $(\lambda=0)$

barrel $(\lambda=0.3)$

pincushion $(\lambda=-0.3)$

- The Radial Distortion Mapping

y_{0} - center of radial distortion (usually principal point)
y_{L} - linearly projected point
y_{R} - radially distorted point

- radial distortion r maps y_{L} to y_{R} along the radial direction
- magnitude of the transfer depends on the radius $\left\|y_{L}-y_{0}\right\|$ only

- circles centered at y_{0} map to centered circles, lines incident on y_{0} map on themselves
- the mapping $r()$ can be scaled to $\operatorname{ar}()$ so that a particular circle C_{n} does not scale

distortion	inside C_{n}	outside C_{n}
barrel	expanding contracting	contracting expanding

in barrel

- choose boundary point that preserves all image content within the same image size

Radial Distortion Models

- let $\mathbf{z}=\mathbf{y}-\mathbf{y}_{0}$
non-homogeneous
- we have $\mathbf{z}_{R}=r\left(\mathbf{z}_{L}\right) \quad \mathbf{z}_{L}$ - linear, \mathbf{z}_{R} - distorted
- but are often interested in $\mathbf{z}_{L}=r^{-1}\left(\mathbf{z}_{R}\right)$
- \mathbf{y}_{n} - a no-distortion point on $C_{n}: r\left(\mathbf{y}_{n}\right)=\mathbf{y}_{n}$
- $\mathbf{z}_{n}=\mathbf{y}_{n}-\mathbf{y}_{0}$

Division Model single parameter $-1 \leq \lambda<1$, has an analytic inverse, models even some fish-eye lenses

$$
\mathbf{z}_{R}=\frac{\hat{\mathbf{z}}}{1+\sqrt{1+\lambda \frac{\|\hat{\mathbf{z}}\|^{2}}{\left\|\mathbf{z}_{n}\right\|^{2}}}}, \quad \text { where } \hat{\mathbf{z}}=\frac{2 \mathbf{z}_{L}}{1-\lambda} \quad \text { and } \quad \mathbf{z}_{L}=\frac{1-\lambda}{1-\lambda \frac{\left\|\mathbf{z}_{R}\right\|^{2}}{\left\|\mathbf{z}_{n}\right\|^{2}}} \mathbf{z}_{R}
$$

$\lambda>0$ - barrel distortion, $\lambda<0$ - pincushion distortion
Polynomial Model better fit for $n \geq 3$, no analytic inverse, may loose monotonicity, hard to calibrate

$$
\mathbf{z}_{L}=\frac{D\left(\mathbf{z}_{R} ; \mathbf{z}_{n}, \mathbf{k}\right)}{1+\sum_{i=1}^{n} k_{i}} \mathbf{z}_{R}, \quad D\left(\mathbf{z}_{R} ; \mathbf{z}_{n}, \mathbf{k}\right)=1+k_{1} \rho^{2}+k_{2} \rho^{4}+\cdots+k_{n} \rho^{2 n}, \rho=\frac{\left\|\mathbf{z}_{R}\right\|}{\left\|\mathbf{z}_{n}\right\|}, \mathbf{k}=\left(k_{i}\right)
$$

e.g. $k_{i} \geq 0$ - barrel distortion, $k_{i} \leq 0-$ pincusion distortion, $i=1, \ldots, n$

Zernike polynomials R_{i}^{0} are a better choice: $R_{2}^{0}(\rho)=2 \rho^{2}-1, R_{4}^{0}(\rho)=6 \rho^{4}-6 \rho^{2}+1, R_{6}^{0}(\rho)=\cdots$

- Real and Linear Camera Models

$$
\mathbf{K}_{0}=\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { 'ideal' calibration matrix } \quad \mathbf{A} \mathbf{K}_{0}=\left[\begin{array}{ccc}
f & s f & u_{0} \\
0 & a f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{llc}
1 & s & u_{0} \\
0 & a & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

Notes

- assumption: the principal point and the center of radial distortion coincide
- f included in \mathbf{K}_{0} to make radial distortion independent of focal length
- A makes radial lens distortion an elliptic image distortion
- it suffices in practice that r^{-1} is an analytic function (r need not be)

Calibrating Radial Distortion

- radial distortion calibration includes at least 5 parameters: $\lambda, u_{0}, v_{0}, s, a$

1. detect a set of straight line segment images $\left\{s_{i}\right\}_{i=1}^{n}$ from a calibration target
2. select a suitable set of k measurement points per segment
how to select k ?
3. define invariant radial transfer error per measurement point $e_{i, j}$
and per segment $e_{i}^{2}=\sum_{j=1}^{k-2} e_{i, j}^{2}$
invariant to rotation, translation

4. minimize total radial transfer error: $\quad \arg \min _{\lambda, u_{0}, v_{0}, s, a} \sum_{i=1}^{n} e_{i}^{2}$

- line segments from real-world images requires segmentation to inliers/outliers
inliers $=$ lines that are straight in reality
- marginalisation over the hidden label gives a 'robust' error, e.g.

$$
\varepsilon_{i}^{2}=-\log \left(e^{-\frac{e_{i}^{2}}{2 \sigma^{2}}}+t\right), \quad t>0
$$

- direct optimization usually suffices but in general such optimization is unstable

Example Calibrations

Low-resolution (VGA) wide field-of-view (130°) camera
Camera 0, im. 6: Reprojection errors (16x)

Cam	0
RMS $[\mathrm{px}]$	0.33
$\mathrm{max}[\mathrm{px}]$	1.97
$f[\mathrm{px}]$	94.59
$a[-]$	1.0951
$u_{0}[\mathrm{px}]$	243.26
$v_{0}[\mathrm{px}]$	353.37
$(\mathrm{poly}) k_{1}$	0.8256
k_{2}	-0.2261
k_{3}	1.2524

4 Mpix consumer camera

- radial distortion is slightly dependend on focal length

Part III

Computing with a Single Camera

(9) Calibration: Internal Camera Parameters from Vanishing Points and Lines
(10) Resectioning: Projection Matrix from 6 Known Points
(1I) Exterior Orientation: Camera Rotation and Translation from 3 Known Points
covered by
[1] [H\&Z] Secs: 8.6, 7.1, 22.1
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
[3] [Golub \& van Loan 1996, Sec. 2.5]

Obtaining Vanishing Points and Lines

- orthogonal pairs can be collected from more images by camera rotation

- vanishing line can be obtained without vanishing points (see Slide 46)

- Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute \mathbf{K}

$$
\begin{array}{rlrl}
\mathbf{d}_{i} & =\mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}, & i=1,2,3 & \\
\text { Slide } 33 \\
\mathbf{p}_{i j} & =\mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}, & i, j=1,2,3, i \neq j & \\
\text { Slide } 36
\end{array}
$$

Constraints

1. orthogonal rays $\mathbf{d}_{1} \perp \mathbf{d}_{2}$ in space then

$$
\begin{aligned}
& 0=\mathbf{d}_{1}^{\top} \mathbf{d}_{2}=\underline{\mathbf{v}}_{1}^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{2}=\underline{\mathbf{v}}_{1}^{\top} \underbrace{\left(\mathbf{K K}^{\top}\right)^{-1}}_{\boldsymbol{\omega}(\mathrm{IAC})} \underline{\mathbf{v}}_{2} \\
& \text { 2. orthogonal planes } \mathbf{p}_{i j} \perp \mathbf{p}_{i k} \text { in space }
\end{aligned}
$$

$$
0=\mathbf{p}_{i j}^{\top} \mathbf{p}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \mathbf{Q} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{i k}
$$

3. orthogonal ray and plane $\mathbf{d}_{k} \| \mathbf{p}_{i j}, k \neq i, j$
normal parallel to optical ray

$$
\mathbf{p}_{i j} \simeq \mathbf{d}_{k} \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}=\lambda \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k} \quad \Rightarrow \quad \underline{\mathbf{n}}_{i j}=\lambda \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k}=\lambda \omega \underline{\mathbf{v}}_{k}, \quad \lambda \neq 0
$$

- $n_{i j}$ may be constructed from non-orthogonal v_{i} and v_{j}, e.g. using the cross-ratio
- ω is a symmetric, positive definite 3×3 matrix IAC $=$ Image of Absolute Conic

-cont'd

(2) orthogonal v.p.
(3) orthogonal v.l.
(4) v.p. orthogonal to v.l.
(5) orthogonal raster $\theta=\pi / 2$
(6) unit aspect $a=1$ when $\theta=\pi / 2$
(7) known principal point $u_{0}=v_{0}=0 \quad \omega_{13}=\omega_{31}=\omega_{23}=\omega_{32}=0 \quad 2$

- these are homogeneous linear equations for the 5 parameters in ω in the form $\mathrm{Dw}=\mathbf{0}$
λ can be eliminated from (4) we will come to solving overdetermined homogeneous equations later \rightarrow Slide ??
- we need at least 5 constraints for full \mathbf{K}
- we get \mathbf{K} from $\boldsymbol{\omega}^{-1}=\mathbf{K} \mathbf{K}^{\top}$ by Choleski decomposition the decomposition returns a positive definite upper triangular matrix one avoids solving a set of quadratic equations for the parameters in \mathbf{K}
$\ln [1]:=K=\{\{f, s, u[0]\},\{0, a * f, v[0]\},\{0,0,1\}\} ;$ K // MatrixForm

Out[2]/MatrixForm=

$$
\left(\begin{array}{ccc}
\mathrm{f} & \mathrm{~s} & \mathrm{u}[0] \\
0 & a \mathrm{f} & \mathrm{v}[0] \\
0 & 0 & 1
\end{array}\right)
$$

$\ln [4]:=\omega=$ Inverse[K.Transpose[K]]*Det[K]^2;
ω // Simplify / / MatrixForm
Out[5]/MatrixForm=

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a^{2} f^{2} & -a f s & a f(-a f u[0]+s v[0]) \\
-a f s & f^{2}+s^{2} & a f s u[0]-\left(f^{2}+s^{2}\right) v[0]
\end{array}\right. \\
& \left.a f(-a f u[0]+s v[0]) \quad a f s u[0]-\left(f^{2}+s^{2}\right) v[0] a^{2} f^{2}\left(f^{2}+u[0]^{2}\right)-2 a f s u[0] v[0]+\left(f^{2}+s^{2}\right) v[0] 2\right) \\
& \ln [8]:=\omega / \mathbf{f}^{\wedge} \mathbf{2} / . \mathbf{s} \rightarrow 0 / / \text { Simplify / / MatrixForm }
\end{aligned}
$$

Out[8]/MatrixForm=

$$
\left(\begin{array}{ccc}
a^{2} & 0 & -a^{2} u[0] \\
0 & 1 & -v[0] \\
-a^{2} u[0] & -v[0] & a^{2}\left(f^{2}+u[0]^{2}\right)+v[0]^{2}
\end{array}\right)
$$

$\ln [10]:=\omega / \cdot\{u[0] \rightarrow 0, \mathrm{v}[0] \rightarrow 0\} / /$ MatrixForm
Out[10]/MatrixForm=

$$
\left(\begin{array}{ccc}
a^{2} f^{2} & -a f s & 0 \\
-a f s & f^{2}+s^{2} & 0 \\
0 & 0 & a^{2} f^{4}
\end{array}\right)
$$

$\ln [17]:=\omega / f^{\wedge} 2 / .\{a \rightarrow 1, s \rightarrow 0\} / /$ Simplify / / MatrixForm
Out[17]//MatrixForm=

$$
\left(\begin{array}{ccc}
1 & 0 & -u[0] \\
0 & 1 & -v[0] \\
-u[0] & -v[0] & f^{2}+u[0]^{2}+v[0]^{2}
\end{array}\right)
$$

Examples

Ex 1:

Assuming known $m_{0}=\left(u_{0}, v_{0}\right)$, two finite orthogonal vanishing points suffice to get f in this formula, $\mathbf{v}_{i}, \mathbf{m}_{0}$ are not homogeneous!

$$
f^{2}=\left|\left(\mathbf{v}_{1}-\mathbf{m}_{0}\right)^{\top}\left(\mathbf{v}_{2}-\mathbf{m}_{0}\right)\right|
$$

Ex 2:

Non-orthogonal vanishing points $\mathbf{v}_{i}, \mathbf{v}_{j}$, known angle $\phi: \cos \phi=\frac{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{j}}{\sqrt{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{i} \sqrt{\underline{\mathbf{v}}_{j}^{\top} \omega \underline{\mathbf{v}}_{j}}}}$

- leads to polynomial equations
- e.g. assuming orthogonal raster, unit aspect (ORUA): $a=1, \theta=\pi / 2$

$$
\boldsymbol{\omega}=\frac{1}{f^{2}}\left[\begin{array}{ccc}
1 & 0 & -u_{0} \\
0 & 1 & -v_{0} \\
-u_{0} & -v_{0} & f^{2}+u_{0}^{2}+v_{0}^{2}
\end{array}\right]
$$

- ORUA and $u_{0}=v_{0}=0$ gives

$$
\left(f^{2}+\mathbf{v}_{i}^{\top} \mathbf{v}_{j}\right)^{2}=\left(f^{2}+\left\|\mathbf{v}_{i}\right\|^{2}\right) \cdot\left(f^{2}+\left\|\mathbf{v}_{j}\right\|^{2}\right) \cdot \cos ^{2} \phi
$$

-Camera Orientation from Vanishing Points

Problem: Given \mathbf{K} and two vanishing points corresponding to two known orthogonal directions $\mathbf{d}_{1}, \mathbf{d}_{2}$, compute camera orientation \mathbf{R} with respect to the plane.

- coordinate system choice, e.g.:

$$
\mathbf{d}_{1}=(1,0,0), \quad \mathbf{d}_{2}=(0,1,0)
$$

- we know that

$$
\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}=(\mathbf{K R})^{-1} \underline{\mathbf{v}}_{i}=\mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_{i}}_{\underline{\mathbf{w}}_{i}}
$$

$$
\mathbf{R d}_{i} \simeq \underline{\mathbf{w}}_{i}
$$

- then $\underline{\mathbf{w}}_{i} /\left\|\underline{\mathbf{w}}_{i}\right\|$ is the i-th column \mathbf{r}_{i} of \mathbf{R}
- the third column is orthogonal:

$$
\begin{aligned}
& \mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2} \\
& \quad \mathbf{R}=\left[\begin{array}{lll}
\frac{\mathbf{w}_{1}}{\left\|\underline{\mathbf{w}}_{1}\right\|} & \frac{\mathbf{w}_{2}}{\left\|\underline{w}_{2}\right\|} & \frac{\mathbf{w}_{1} \times \mathbf{w}_{2}}{\left\|\underline{\underline{w}}_{1} \times \underline{\mathbf{w}}_{2}\right\|}
\end{array}\right]
\end{aligned}
$$

some suitable scenes

Application：Planar Rectification

Principle：Rotate camera parallel to the plane of interest．

$$
\begin{gathered}
\underline{\mathbf{m}} \simeq \mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}} \quad \underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}} \\
\underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}(\mathbf{K R})^{-1} \underline{\mathbf{m}}=\mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1} \underline{\mathbf{m}}=\mathbf{H} \underline{\mathbf{m}}
\end{gathered}
$$

－ \mathbf{H} is the rectifying homography
－both \mathbf{K} and \mathbf{R} can be calibrated from two finite vanishing points
－not possible when one（or both）of them are infinite

－Camera Resectioning

Camera calibration and orientation from a known set of $k \geq 6$ reference points and their images $\left\{\overline{\left.\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}}\right.$ ．

automatic calibration point detection

calibration target with translation stage

calibration chart

- The Minimal Problem for Resectioning

Problem: Given $k=6$ corresponding pairs $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{k}$, find P

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{\top}^{\top} & a_{2}
\end{array}\right] \quad \begin{aligned}
& \underline{\mathbf{X}}_{i}=\left(x_{i}, y_{i}, z_{i}, 1\right), \quad i=1,2, \ldots, k, k=6 \\
& \underline{\mathbf{m}}_{i}=\left(u_{i}, v_{i}, 1\right), \quad \lambda_{i} \in \mathbb{R}, \lambda_{i} \neq 0
\end{aligned}
$$

easy to modify for infinite points X_{i}
expanded:

$$
\lambda_{i} u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad \lambda_{i} v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}, \quad \lambda_{i}=\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}
$$

eliminating λ gives: $\quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}$

Then

$$
\mathbf{A} \mathbf{q}=\left[\begin{array}{cccccc}
\mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \tag{8}\\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\
\vdots & & & & & \vdots \\
\mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{q}_{1} \\
q_{14} \\
\mathbf{q}_{2} \\
q_{24} \\
\mathbf{q}_{3} \\
q_{34}
\end{array}\right]=\mathbf{0}
$$

- we need 11 indepedent parameters for \mathbf{P}
- $\mathbf{A} \in \mathbb{R}^{2 k, 12}, \mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give $\operatorname{rank} \mathbf{A}=12$ and there is no non-trivial null space
- drop one row to get rank 11 matrix, then the basis of the null space of \mathbf{A} gives q

－The Jack－Knife Solution for $k=6$

－given the 6 correspondences，we have 12 equations for the 11 parameters
－can we use all the information present in data？

Jack－knife estimation

1．$n:=0$
2．for $i=1,2, \ldots, 2 k$ do
a．delete i－th row from \mathbf{A} ，this gives \mathbf{A}_{i}
b．if dim null $\mathbf{A}_{i}>1$ continue with the next i

c．$n:=n+1$
d．compute the right null－space \mathbf{q}_{i} of \mathbf{A}_{i}
e．g．by＇economy－size＇SVD
e．normalize \mathbf{q}_{i} to $\hat{\mathbf{q}}_{i}=\mathbf{q}_{i} / q_{12}$ this assumes finite camera with $P_{3,3}=1$
3．from all n vectors $\hat{\mathbf{q}}_{i}$ collected in Step 1d compute

$$
\mathbf{q}=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i}, \quad \operatorname{var}[\mathbf{q}]=\frac{n-1}{n} \operatorname{diag} \sum_{i-1}^{n}\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)^{\top}
$$

－have a solution + an error estimate，per individual elements of \mathbf{P}
－at least 5 points must be in a general position
see Slide 67
－large error indicates near degeneracy
－computation not efficient with $k>6$ points，needs（ $\binom{2 k}{11}$ draws，e．g．$k=7 \rightarrow 364$ draws
－one needs $k \geq 7$ for the full covariance matrix
－better error estimation method：decompose \mathbf{P}_{i} to $\mathbf{K}_{i}, \mathbf{R}_{i}, \mathbf{t}_{i}$（Slide 30），represent \mathbf{R}_{i} with 3 parameters （e．g．Euler angles，or in Cayley representation，see Slide 136）and compute the errors for the parameters

Degenerate (Critical) Configurations for Resectioning

Let $\mathcal{X}=\left\{X_{i} ; i=1, \ldots\right\}$ be a set of points and $\mathbf{P}_{1} \not \nsim \mathbf{P}_{2}$ be two regular (rank-3) cameras. Then two configurations $\left(\mathbf{P}_{1}, \mathcal{X}\right)$ and $\left(\mathbf{P}_{2}, \mathcal{X}\right)$ are image-equivalent if

$$
\mathbf{P}_{1} \underline{\mathbf{X}}_{i} \simeq \mathbf{P}_{2} \underline{\mathbf{X}}_{i} \quad \text { for all } \quad X_{i} \in \mathcal{X}
$$

Case 4

- if all calibration points $X_{i} \in \mathcal{X}$ lie on a plane \varkappa the camera resectioning is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty}=\varkappa \cap \mathcal{C}$ excluded
this also means we cannot resect if all X_{i} are infinite
- by adding points $X_{i} \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next
see proof sketch in the notes or in [H\&Z, Sec. 22.1.2]

Note that if \mathbf{Q}, \mathbf{T} are suitable non-singular homographies then $\mathbf{P}_{1} \simeq \mathbf{Q} \mathbf{P}_{0} \mathbf{T}$, where \mathbf{P}_{0} is canonical and

$$
\mathbf{P}_{0} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \mathbf{P}_{2} \underbrace{\mathbf{T} \mathbf{X}_{i}}_{\underline{\mathbf{Y}}_{i}} \text { for all } Y_{i} \in \mathcal{Y}
$$

cont'd (all cases)

Case 5
Case 6

- cameras C_{1}, C_{2} co-located at point \mathcal{C}
- points on three optical rays or one optical ray and one optical plane
- Case 5: we see 3 isolated point images
- Case 6: we see a line of points and an isolated point

Case 3

- cameras lie on a line $\mathcal{C} \backslash\left\{C_{\infty}, C_{\infty}^{\prime}\right\}$
- points lie on \mathcal{C} and

1. on two lines meeting \mathcal{C} at $C_{\infty}, C_{\infty}^{\prime}$
2. or on a plane meeting \mathcal{C} at C_{∞}

- Case 3: we see 2 lines of points

Case 2

- cameras lie on a planar conic $\mathcal{C} \backslash\left\{C_{\infty}\right\}$
not necessarily an ellipse
- points lie on \mathcal{C} and an additional line meeting the conic at C_{∞}
- Case 2: we see 2 lines of points
- cameras and points all lie on a twisted cubic \mathcal{C}
- Case 1: we see a conic

- Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference $\underline{\text { Points. }}$ Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then

> configuration w/o rotation

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) . \tag{9}
\end{equation*}
$$

2. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{10}
\end{equation*}
$$

3. Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

[Fischler \& Bolles, 1981]
4. Solve system of 3 quadratic eqs in 3 unknowns z_{i} there may be no real root; there are up to 4 solutions that cannot be ignored
(verify on additional points)
5. Compute \mathbf{C} by trilateration (3-sphere intersection) from \mathbf{X}_{i} and z_{i}; then λ_{i} from (10) and \mathbf{R} from (9)

[^0]
Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}

degenerate

- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$

- additional critical configurations depend on the method to solve the quadratic equations
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
resectioning	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	65
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	69

- resectioning and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

12 Camera Motions Inducing Epipolar Geometry
（13）Estimating Fundamental Matrix from 7 Correspondences
（14）Estimating Essential Matrix from 5 Correspondences
（15）Triangulation：3D Point Position from a Pair of Corresponding Points

Abstract

covered by

［1］［H\＆Z］Secs：9．1，9．2，9．6，11．1，11．2，11．9，12．2，12．3，12．5．1
［2］H．Li and R．Hartley．Five－point motion estimation made easy．In Proc ICPR 2006，pp．630－633
additional references
宔
H．Longuet－Higgins．A computer algorithm for reconstructing a scene from two projections．Nature， 293 （5828）：133－135， 1981.

Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Epipolar constraint: d_{2}, b, d_{1} are coplanar

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line in image π_{j} induced by m_{i} in image π_{i}
a necessary condition, see also Slide 83

Cross Products and Maps by Antisymmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 antisymmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

$$
\begin{array}{ll}
\text { 1. }[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times} & \text {the general antisymmetry property } \\
\text { 2. }\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\| & \text { Frobenius norm }\left(\|\mathbf{A}\|_{F}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}\right) \\
\text { 3. }[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0} & \\
\text { 4. } \operatorname{rank}[\mathbf{b}]_{\times}=2 \text { iff }\|\mathbf{b}\|>0 & \\
\text { 5. if } \mathbf{R} \mathbf{R}^{\top}=\mathbf{I} \text { then }[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top} & \\
\text { 6. }[\mathbf{B} \mathbf{z}]_{\times} \simeq \mathbf{B}^{-\top}[\mathbf{z}]_{\times} \mathbf{B}^{-1} & \text { in general, }\left[\mathbf{A}^{-1} \mathbf{t}\right]_{\times} \cdot \operatorname{det} \mathbf{A}=\mathbf{A}^{\top}[\mathbf{t}]_{\times} \mathbf{A} \\
\text { 7. if } \mathbf{R}_{b} \text { is rotation about } \mathbf{b} \text { then }\left[\mathbf{R}_{b} \mathbf{b}\right]_{\times}=[\mathbf{b}]_{\times} &
\end{array}
$$

Expressing Epipolar Constraint Algebraically

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right], i=1,2
$$

\mathbf{R}_{21} - relative camera rotation, $\mathbf{R}_{21}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}$
\mathbf{t}_{21} - relative camera translation, $\mathbf{t}_{21}=\mathbf{t}_{2}-\mathbf{R}_{21} \mathbf{t}_{1}=-\mathbf{R}_{2} \mathbf{b}$
remember: $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}=-\mathbf{R}^{\top} \mathbf{t}$
(Slides 30 and 32)

$$
0=\mathbf{d}_{2}^{\top} \underbrace{\mathbf{p}_{\varepsilon}}_{\text {normal of } \varepsilon} \simeq \underbrace{\left(\mathbf{Q}_{2}^{-1} \underline{\mathbf{m}}_{2}\right)^{\top}}_{\text {optical ray }} \underbrace{\mathbf{Q}_{1}^{\top} \underline{\mathbf{l}}_{1}}_{\text {optical plane }}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left(\underline{\mathbf{e}}_{1} \times \underline{\mathbf{m}}_{1}\right)}_{\text {image of } \varepsilon \text { in } \pi_{2}}=\underline{\mathbf{m}}_{2}^{\top} \underbrace{\left(\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}\right)}_{\text {fundamental matrix } \mathbf{F}} \underline{\mathbf{m}}_{1}
$$

Epipolar constraint $\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}=0 \quad$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
$\underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}$
$\mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}\right]_{\times}=\stackrel{\circledast 1}{\cdots}=\mathbf{K}_{2}^{-\top} \underbrace{\left[-\mathbf{t}_{21}\right]_{\times}} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}$
$\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}} \quad \mathbf{R}_{21}=\mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}$ baseline in Cam 2 baseline in Cam 1

Slide 74

- $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$ (non-trivially)
- all epipolars meet at the epipole
essential matrix \mathbf{E}

Epipole is the Image of the Other Camera

Camera moved horizontally: How high is it above floor?

- A Summary of Epipolar Constraint

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} \\
\mathbf{F} & \simeq \mathbf{K}_{2}^{-\top} \mathbf{E} \mathbf{K}_{1}^{-1} \\
\mathbf{E} & \simeq\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times} \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), \quad \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\bullet & \mathbf{E} \text { captures the relative pose } \\
& {[\text { Longuet-Higgins 1981] }} \\
& \text { the translation length } \mathbf{t}_{21} \text { is lost } \\
& \mathbf{E} \text { is homogeneous }
\end{aligned}
$$

$$
\mathbf{Q}_{1}^{-\top} \mathbf{Q}_{2}^{\top} \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times}
$$

proof of $\underline{\mathbf{l}}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}$: line/point transmutation $\underline{l}_{2} \simeq \mathbf{F} \underline{\mathbf{x}} \simeq \mathbf{F}\left(\underline{\mathbf{k}} \times \underline{\mathbf{l}}_{1}\right)=\mathbf{F}[\underline{\mathbf{k}}]_{\times} \underline{\mathbf{l}}_{1}=\mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{1}_{1}$

$x \neq e_{1}, e_{1} \notin k: \underline{\mathbf{k}}^{\top} \underline{\mathbf{e}}_{1}=\left\|\underline{\mathbf{e}}_{1}\right\|^{2} \neq 0$

-The Representation Theorem for Essential Matrices

Let $\mathbf{E}=\mathbf{U D V}^{\top}$ s.t. $\mathbf{D}=\operatorname{diag}(1,1,0)$ then $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{R}$, where \mathbf{R} is orthogonal
Proof.
We introduce $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ s.t. $|\alpha|=1$ (rotation by $\pm 90^{\circ}$). Then

$$
\begin{array}{r}
\mathbf{U D V}^{\top}=\underbrace{\mathbf{W D V}^{\top}}_{\mathbf{U}\left[\begin{array}{ccc}
0 & -\alpha & 0 \\
\alpha & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\mathbf{U}\left[\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right]=\alpha\left[\mathbf{u}_{3}\right]_{\times} \mathbf{U} \rightarrow \text { Slide } 74} \mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -\alpha & 0 \\
\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{W} \mathbf{V}^{\top}=\alpha\left[\mathbf{u}_{3}\right]_{\times} \underbrace{\mathbf{U W} \mathbf{V}^{\top}}_{\mathbf{R}}
\end{array}
$$

- we needed rotation \mathbf{W} s.t. $\mathbf{D} W^{\top}$ is antisymmetric, the choice is unique up to $\operatorname{sign} \alpha$

Theorem
Let \mathbf{E} be a 3×3 matrix with SVD $\mathbf{E}=\mathbf{U D V}^{\top}$. Then \mathbf{E} is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.
Direct implication above. Converse: Let $\mathbf{U D V}^{\top}$ be an SVD with $\mathbf{D}=\operatorname{diag}(1,1,0)$. Then

$$
\mathbf{U D V}^{\top}=\underbrace{\mathbf{U D W}}_{\left[\mathbf{u}_{3}\right]_{\times} \mathbf{U}}{ }^{\top} \mathbf{W V}^{\top}
$$

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}$
[H\&Z, sec. 9.6]

1. compute SVD of $\mathbf{E}=\mathbf{U D V}^{\top}$ s.t. $\mathbf{D}=\operatorname{diag}(1,1,0)$
2. if $\operatorname{det} \mathbf{U}<0$ transform it to $-\mathbf{U}$, do the same for \mathbf{V}
3. compute

$$
\mathbf{R}_{21}=\mathbf{U} \underbrace{\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{11}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21}=-\beta \mathbf{u}_{3}, \quad|\alpha|=1, \quad \beta \neq 0
$$

Notes

- \mathbf{t}_{21} recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha= \pm 1$
- change of sign in \mathbf{W} rotates the solution by 180° about \mathbf{t}

$$
\mathbf{R}_{1}=\mathbf{U W} \mathbf{V}^{\top}, \mathbf{R}_{2}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \text { which is }
$$

a rotation by 180° about $\mathbf{u}_{3}=\mathbf{t}_{21}$:

$$
\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \mathbf{u}_{3}=\mathbf{U}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\mathbf{u}_{3}
$$

- 4 solution sets for 4 sign combinations of α, β
see next for geometric interpretation

－Four Solutions to Essential Matrix Decomposition

－chirality constraint：all 3D points are in front of both cameras
－this singles－out the upper left case
［H\＆Z，Sec．9．6．3］

-7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \text { known: } \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesised corresp. Solution:

$$
\begin{gathered}
\mathbf{D =}=\left[\begin{array}{ccccccccc}
u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\
u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} & u_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\
u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\
\vdots & & & & & & & & \vdots \\
u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1
\end{array}\right] \mathbf{D} \in \mathbb{R}^{k, 9} \\
\mathbf{D f}=\mathbf{0}, \quad \mathbf{f}=\left[\begin{array}{llllll}
f_{11} & f_{21} & f_{31} & \ldots & f_{33}
\end{array}\right]^{\top}, \quad \mathbf{f} \in \mathbb{R}^{9},
\end{gathered}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$, hence

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2} \quad$ by SVD or QR factorization
2. get up to 3 real solutions for α from

$$
\operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$

- the result may depend on image transformations
- normalization improves conditioning
\rightarrow Slide 88
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

$$
\rightarrow \text { Slide } 104
$$

Degenerate Configurations for Fundamental Matrix Estimation

When is \mathbf{F} not uniquely determined from any number of correspondences? [H\&Z, Sec. 11.9]

1. when images are related by homography
a. camera centers coincide $C_{1}=C_{2}: \quad \mathbf{H}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}$
b. camera moves but all 3D points lie in a plane (\mathbf{n}, d) : $\mathbf{H}=\mathbf{K}_{2}\left(\mathbf{R}_{21}-\mathbf{t}_{21} \mathbf{n}^{\top} / d\right) \mathbf{K}_{1}^{-1}$

- epipolar geometry is not defined
- we do get an \mathbf{F} from the 7-point algorithm but it is of the form of $\mathbf{F}=[\mathbf{s}]_{\times} \mathbf{H}$ with \mathbf{s} arbitrary (nonzero)

- correspondence $x \leftrightarrow y$
- y is the image of $x: \underline{\mathbf{y}} \simeq \mathbf{H x}$
- this can be written as $y \in l, \quad \underline{1} \simeq \mathbf{s} \times \mathbf{H x} \quad$ arbitrary \mathbf{s}

$$
0=\underline{\mathbf{y}}^{\top}(\underline{\mathbf{s}} \times \mathbf{H} \underline{\mathbf{x}})=\underline{\mathbf{y}}^{\top}[\underline{\mathbf{s}}]_{\times} \mathbf{H} \underline{\mathbf{x}}
$$

2. both camera centers and all 3D points lie on a ruled quadric
hyperboloid of one sheet, cones, cylinders, two planes

- there are 3 solutions for \mathbf{F}

notes

- estimation of \mathbf{E} can deal with planes: $[\mathbf{s}]_{\times} \mathbf{H}=[\mathbf{s}]_{\times}\left(\mathbf{R}_{21}-\mathbf{t}_{21} \mathbf{n}^{\top} / d\right)$ has equal eigenvalues iff $\mathbf{s}=\mathbf{t}_{21}$, the decomposition works (nonunique, as before)
* 1pt for a proof
- a complete treatment with additional degenerate configurations in [H\&Z, sec. 22.2]
- a stronger epipolar constraint could reject some configurations

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2} \stackrel{ \pm}{\sim} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{ \pm} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- note that the constraint is not invariant to the change of either sign of $\underline{\mathbf{m}}_{i}$
- all 7 correspondence in 7-point alg. must have the same sign
see later
- this may help reject some wrong matches, see Slide 105
[Chum et al. 2004]
expensive this is called chirality constraint

-Five-Point Algorithm for Relative Camera Orientation

Problem: Given $\left\{m_{i}, m_{i}^{\prime}\right\}_{i=1}^{5}$ corresponding image points and calibration matrix \mathbf{K}, recover the camera motion \mathbf{R}, \mathbf{t}.
Obs:

1. $\mathbf{R}-3 \mathrm{DOF}, \mathrm{t}$ - we can recover 2DOF only, in total 5 DOF \rightarrow we need 3 constraints on E
2. real $\mathbf{F} \in \mathbb{R}^{3,3}$ is a fundamental matrix iff $\operatorname{det} \mathbf{F}=0$
3. fundamental matrix is essential iff its two non-zero eigenvalues are equal

This gives an equation system:

$$
\begin{array}{rlr}
\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{y}}_{i}^{\prime} & =0 & 5 \text { linear constraints }\left(\underline{\mathbf{v}} \simeq \mathbf{K}^{-1} \underline{\mathbf{m}}\right) \\
\operatorname{det} \mathbf{E} & =0 & 1 \text { cubic constraint } \\
\mathbf{E} \mathbf{E}^{\top} \mathbf{E}-\frac{1}{2} \operatorname{tr}\left(\mathbf{E} \mathbf{E}^{\top}\right) \mathbf{E} & =\mathbf{0} & 9 \text { cubic constraints, } 2 \text { independent }
\end{array}
$$

1. estimate \mathbf{E} by SVD from $\underline{\mathbf{v}}_{i}^{\top} \mathbf{E} \underline{\mathbf{v}}_{i}^{\prime}=0$ by the null-space method, this gives $\mathbf{E}=x \mathbf{E}_{1}+y \mathbf{E}_{2}+z \mathbf{E}_{3}+\mathbf{E}_{4}$
2. at most 10 (complex) solutions for x, y, z from the cubic constraints

- when all 3D points lie on a plane: at most 2 solutions (twisted-pair)
can be disambiguated in 3 views or by chirality constraint (Slide 80) unless all 3D points are closer to one camera
- 6-point problem for unknown f
[Kukelova et al. BMVC 2008]
- resources at http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

- The Triangulation Problem

Problem: Given cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$ compute a 3D point \mathbf{X} projecting to x and y

$$
\lambda_{1} \underline{\mathbf{x}}=\mathbf{P}_{1} \underline{\mathbf{X}}, \quad \lambda_{2} \underline{\mathbf{y}}=\mathbf{P}_{2} \underline{\mathbf{X}}, \quad \underline{\mathbf{x}}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
1
\end{array}\right], \quad \underline{\mathbf{y}}=\left[\begin{array}{c}
u^{2} \\
v^{2} \\
1
\end{array}\right], \quad \mathbf{P}_{i}=\left[\begin{array}{c}
\left(\mathbf{p}_{1}^{i}\right)^{\top} \\
\left(\mathbf{p}_{2}^{i}\right)^{\top} \\
\left(\mathbf{p}_{3}^{i}\right)^{\top}
\end{array}\right]
$$

Linear triangulation method

$$
\begin{array}{rlr}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{1}\right)^{\top} \underline{\mathbf{X}}, & u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{1}^{2}\right)^{\top} \underline{\mathbf{X}}, \\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{1}\right)^{\top} \underline{\mathbf{X}}, & v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top} \underline{\mathbf{X}}=\left(\mathbf{p}_{2}^{2}\right)^{\top} \underline{\mathbf{X}},
\end{array}
$$

Gives

$$
\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}, \quad \mathbf{D}=\left[\begin{array}{c}
u^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{1}^{1}\right)^{\top} \tag{12}\\
v^{1}\left(\mathbf{p}_{3}^{1}\right)^{\top}-\left(\mathbf{p}_{2}^{1}\right)^{\top} \\
u^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{1}^{2}\right)^{\top} \\
v^{2}\left(\mathbf{p}_{3}^{2}\right)^{\top}-\left(\mathbf{p}_{2}^{2}\right)^{\top}
\end{array}\right], \quad \mathbf{D} \in \mathbb{R}^{4,4}, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- back-projected rays will generally not intersect due to image error, see next
- using Jack-knife (Slide 66) not recommended
- we will use SVD (Slide 86)
- but the result will not be invariant to projective frame
replacing $\mathbf{P}_{1} \mapsto \mathbf{P}_{1} \mathbf{H}, \mathbf{P}_{2} \mapsto \mathbf{P}_{2} \mathbf{H}$ does not always result in $\underline{\mathbf{X}} \mapsto \mathbf{H}^{-1} \underline{\mathbf{X}}$
- the homogeneous form in (12) can represent points at infinity

- The Least-Squares Triangulation by SVD

- if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2} \quad \text { s.t. } \quad\|\underline{\mathbf{X}}\|=1, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- let \mathbf{D}_{i} be the i-th row of \mathbf{D}, then
$\|\mathbf{D} \underline{\mathbf{X}}\|^{2}=\sum_{i=1}^{4}\left(\mathbf{D}_{i} \underline{\mathbf{X}}\right)^{2}=\sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{D}_{i}^{\top} \mathbf{D}_{i} \underline{\mathbf{X}}=\underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}$, where $\underline{\mathbf{Q}}=\sum_{i=1}^{4} \mathbf{D}_{i}^{\top} \mathbf{D}_{i}=\mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}$
- we write the SVD of \mathbf{Q} as $\mathbf{Q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which [Golub \& van Loan 1996, Sec. 2.5]

$$
\sigma_{1}^{2} \geq \cdots \geq \sigma_{4}^{2} \geq 0 \quad \text { and } \quad \mathbf{u}_{l}^{\top} \mathbf{u}_{m}= \begin{cases}0 & \text { if } l \neq m \\ 1 & \text { otherwise }\end{cases}
$$

- then

$$
\underline{\mathbf{X}}=\arg \min _{\mathbf{q},\|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\mathbf{u}_{4}, \quad \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{q}^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \mathbf{q}=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \mathbf{q}\right)^{2}
$$

we have a sum of non-negative elements $0 \leq\left(\mathbf{u}_{j}^{\top} \mathbf{q}\right)^{2} \leq 1$, let $\mathbf{q}=\mathbf{u}_{4}+\overline{\mathbf{q}}$ s.t. $\overline{\mathbf{q}} \perp \mathbf{u}_{4}$, then

$$
\mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\sigma_{4}^{2}+\sum_{j=1}^{3} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)^{2} \geq \sigma_{4}^{2}
$$

－cont＇d

－if $\sigma_{4} \ll \sigma_{3}$ ，there is a unique solution $\underline{\mathbf{X}}=\mathbf{u}_{4}$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^{2}=\sigma_{4}^{2}$
the quality（conditioning）of the solution may be expressed as $q=\sigma_{3} / \sigma_{4}$（greater is better）

Matlab code for the least－squares solver：

$$
\begin{aligned}
& {[\mathrm{U}, \mathrm{O}, \mathrm{~V}]=\operatorname{svd}(\mathrm{D}) ;} \\
& \mathrm{X}=\mathrm{V}(:, \mathrm{end}) ; \\
& \mathrm{q}=\mathrm{O}(3,3) / \mathrm{O}(4,4) ;
\end{aligned}
$$

$\circledast \mathrm{P} 1$ ；2pt：Why did we decompose \mathbf{D} and not $\mathbf{Q}=\mathbf{D}^{\top} \mathbf{D}$ ？Could we use QR decomposition instead of SVD？

-Numerical Conditioning

- The equation $\mathbf{D} \underline{X}=\mathbf{0}$ in (12) may be ill-conditioned for numerical computation, which results in a poor estimate for $\underline{\mathbf{X}}$.

Why: on a row of \mathbf{D} there are big entries together with small entries, e.g. of orders projection centers in mm , image points in px

$$
\left[\begin{array}{cccc}
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6} \\
10^{3} & 0 & 10^{3} & 10^{6} \\
0 & 10^{3} & 10^{3} & 10^{6}
\end{array}\right]
$$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$
\mathbf{0}=\mathbf{D q}=\mathbf{D S S}^{-1} \mathbf{q}=\overline{\mathbf{D}} \overline{\mathbf{q}}
$$

choose \mathbf{S} to make the entries in $\hat{\mathbf{D}}$ all smaller than unity in absolute value:

$$
\mathbf{S}=\operatorname{diag}\left(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}\right) \quad \mathrm{S}=\operatorname{diag}(1 . / \max (\max (\operatorname{abs}(\mathrm{D})), 1))
$$

2. solve for $\overline{\mathbf{q}}$ as before
3. get the final solution as $\mathbf{q}=\mathbf{S} \overline{\mathbf{q}}$

- when SVD is used in camera resectioning, conditioning is essential for success
\rightarrow Slide 65

Algebraic Error vs Reprojection Error

- algebraic residual error:

$$
\varepsilon^{2}=\sigma_{4}^{2}=\sum_{c=1}^{2}\left[\left(u^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}+\left(v^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}\right]
$$

- reprojection error

$$
e^{2}=\sum_{c=1}^{2}\left[\left(u^{c}-\frac{\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}}\right)^{2}+\left(v^{c}-\frac{\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}}\right)^{2}\right]
$$

- algebraic error zero \Rightarrow reprojection error zero
$\sigma_{4}=0 \Rightarrow$ non-trivial null space
- epipolar constraint satisfied \Rightarrow equivalent results
- in general: minimizing algebraic error cheap but it gives inferior results
- minimizing reprojection error expensive but it gives good results
- the gold standard method - deferred to Slide 100

Ex:

- forward camera motion
- error $f / 50$ in image 2 , orthogonal to epipolar plane
X_{T} - noiseless ground truth position
X_{r} - reprojection error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

Optimal Triangulation for the Geeks

- detected image points x, y do not satisfy epipolar geometry exactly
- as a result optical rays do not intersect in space, we must correct the image points to \hat{x}, \hat{y} first

1. given epipolar line l_{1} and $l_{2}, \mathbf{l}_{2} \simeq \mathbf{F}\left[\underline{e}_{1}\right]_{\times} \underline{l}_{1}$ the \hat{x}, \hat{y} are the closest points on l_{1}, l_{2}
2. parameterize all possible l_{1} by θ

- find θ after translating $\underline{\mathbf{x}}, \underline{\mathbf{y}}$ to $(0,0,1)$, rotating the epipoles to $\left(1,0, f_{1}\right),\left(1,0, f_{2}\right)$, and parameterising $\mathbf{l}_{1}=(0, \theta, 1) \times\left(1,0, f_{1}\right)$

3. minimise the error

$$
\theta^{*}=\arg \min _{\theta} d^{2}\left(x, l_{1}(\theta)\right)+d^{2}\left(y, l_{2}(\theta)\right)
$$

the problem reduces to 6-th degree polynomial root finding, see [H\&Z, Sec 12.5.2] 4. compute \hat{x}, \hat{y} and triangulate using the linear method on Slide 85

- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- a fully optimal procedure requires error re-definition in order to get the most probable \hat{x}, \hat{y}

- We Have Added to The ZOO

Continuation from Slide 71

problem	given	unknown	slide
resectioning	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	65
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	69
fundamental matrix	7 img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{7}$	\mathbf{F}	81
relative orientation	$\mathbf{K}, 5$ img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{5}$	\mathbf{R}, \mathbf{t}	84
triangulation	1 img-img correspondence $\left(m_{i}, m_{i}^{\prime}\right)$	X	85

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators \rightarrow Slide 113)
- algebraic error optimization (with SVD) makes sense in resectioning and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Part V

Optimization for 3D Vision

10 Algebraic Error Optimization
(1) The Concept of Error for Epipolar Geometry

18 Levenberg-Marquardt's Iterative Optimization
(19) The Correspondence Problem

120 Optimization by Random Sampling
covered by
[1] [H\&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
additional references
P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. Computer Vision, Graphics, and Image Processing, 18:97-108, 1982.
O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236-243. Springer-Verlag, 2003.
O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented evipolar constraint. In Proc ICPR. vol 1:112-115. 2004.

-The Concept of Error for Epipolar Geometry

Problem: Given at least 8 corresponding points $x_{i} \leftrightarrow y_{j}$ in a general position, estimate the most likely (or most probable) fundamental matrix \mathbf{F}.

$$
\mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad i=1,2, \ldots, k, \quad k \geq 8
$$

image 1

- detected points x_{i}, y_{i}; the correspondence set is $S=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$
- corrected points \hat{x}_{i}, \hat{y}_{i}; the set is $\hat{S}=\left\{\left(\hat{x}_{i}, \hat{y}_{i}\right)\right\}_{i=1}^{k}$
- corrected points satisfy the epipolar geometry exactly $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\underline{\mathbf{x}}}_{i}=0, i=1, \ldots, k$
- small correction is more probable
- ok, but we need to choose a definite error function for optimization that is tractable
- the solution for calibrated cameras (unknown \mathbf{E}) is essentially the same and is not mentioned here explicitly

cont'd

- Let $V(\cdot)$ be a positive semi-definite 'energy function'
- e.g., per correspondence,

$$
\begin{equation*}
V_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)=\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2} \tag{13}
\end{equation*}
$$

- the total (negative) log-likelihood (of all data) then is

$$
L(S \mid \hat{S}, \mathbf{F})=\sum_{i=1}^{k} V_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)
$$

- and the optimization problem is

$$
\begin{equation*}
\left(\hat{S}^{*}, \mathbf{F}^{*}\right)=\arg \min _{\substack{\mathbf{F} \\ \operatorname{rank} \mathbf{F}=2}} \min _{\substack{\hat{\hat{\hat{N}}} \\ \hat{\mathrm{~N}}_{i}^{\top} \mathbf{F} \\ \underline{\underline{x}}_{i}}} \sum_{i=1}^{k} V_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right) \tag{14}
\end{equation*}
$$

we mention 3 approaches

1. direct optimization of 'geometric error' over all variables \hat{S}, \mathbf{F}

Slide 95
2. approximate minimization of $L(S \mid \hat{S}, \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F}

Slide 96
3. marginalization of $L(S, \hat{S} \mid \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F}

Method 1: Geometric Error Optimization

- we need to encode the constraints $\hat{\mathbf{y}}_{i} \mathbf{F} \hat{\underline{\mathbf{x}}}_{i}=0, \operatorname{rank} \mathbf{F}=2$
- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H\&Z,Sec. 9.5] for complete characterization

$$
\mathbf{P}_{1}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \quad \mathbf{P}_{2}=\left[\begin{array}{lll}
\left.\underline{\mathbf{e}}_{2}\right]_{\times} \mathbf{F}+\underline{\mathbf{e}}_{2} \mathbf{e}_{1}^{\top} & \underline{\mathbf{e}}_{2}
\end{array}\right]
$$

$\circledast \mathrm{H}$; 2pt: Verify that \mathbf{F} is a f.m. of $\mathbf{P}_{1}, \mathbf{P}_{2}$, for instance that $\mathbf{F} \simeq \mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{e}_{1}\right]_{\times}$

1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm \rightarrow Slide 81; construct camera $\mathbf{P}_{2}^{(0)}$ from $\mathbf{F}^{(0)}$
2. triangulate 3D points $\hat{X}_{i}^{(0)}$ from correspondences $\left(x_{i}, y_{i}\right)$ for all $i=1, \ldots, k \rightarrow$ Slide 85
3. express the energy function as reprojection error

$$
W_{i}\left(x_{i}, y_{i} \mid \hat{X}_{i}, \mathbf{P}_{2}\right)=\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2} \quad \text { where } \quad \hat{\mathbf{x}}_{i} \simeq \mathbf{P}_{1} \underline{\hat{\mathbf{x}}}_{i}, \underline{\hat{\mathbf{y}}}_{i} \simeq \mathbf{P}_{2} \underline{\hat{\mathbf{x}}}_{i}
$$

4. starting from $\mathbf{P}_{2}^{(0)}, \hat{X}^{(0)}$ minimize

$$
\left(\hat{X}^{*}, \mathbf{P}_{2}^{*}\right)=\arg \min _{\mathbf{P}_{2}, \hat{X}} \sum_{i=1}^{k} W_{i}\left(x_{i}, y_{i} \mid \hat{X}_{i}, \mathbf{P}_{2}\right)
$$

5. compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}^{*}$

- $3 k+12$ parameters to be found: latent: $\hat{\mathbf{X}}_{i}$, for all i (correspondences!), non-latent: \mathbf{P}_{2}
- minimal representation: $3 k+7$ parameters, $\mathbf{P}_{2}=\mathbf{P}_{2}(\mathbf{F}) \rightarrow$ Slide 138
- there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 131

-Method 2: First-Order Error Approximation

An elegant method for solving problems like (14):

- we will get rid of the latent parameters
[H\&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\varepsilon=\underline{\mathbf{y}}^{\top} \mathbf{F} \underline{\mathbf{x}}$ from Slide 81

Observations:

- correspondences $\hat{x}_{i} \leftrightarrow \hat{y}_{i}$ satisfy $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}=0, \quad \underline{\hat{\mathbf{x}}}_{i}=\left(\hat{u}^{1}, \hat{v}^{1}, 1\right), \underline{\hat{\mathbf{y}}}_{i}=\left(\hat{u}^{2}, \hat{v}^{2}, 1\right)$
- this is a manifold $\mathcal{V}_{F} \in \mathbb{R}^{4}$: a set of points $\hat{\mathbf{Z}}=\left(\hat{u}^{1}, \hat{v}^{1}, \hat{u}^{2}, \hat{v}^{2}\right)$ consistent with \mathbf{F}
- let $\hat{\mathbf{Z}}_{i}$ be the closest point on \mathcal{V}_{F} to measurement \mathbf{Z}_{i}, then (see (13))

$$
\begin{aligned}
&\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}\right\|^{2}=\left(u_{i}^{1}-\hat{u}_{i}^{1}\right)^{2}+\left(v_{i}^{1}-\hat{v}_{i}^{1}\right)^{2}+\left(u_{i}^{2}-\hat{u}_{i}^{2}\right)^{2}+\left(v_{i}^{2}-\hat{v}_{i}^{2}\right)^{2}= \\
&=V_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right) \stackrel{\text { def }}{=}\left\|\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)\right\|^{2} \\
& \text { which is what we needed in (14) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{Z}_{i}=\left(u^{1}, v^{1}, u^{2}, v^{2}\right)-\text { measurement } \\
& \text { algebraic error: } \quad \varepsilon\left(\hat{\mathbf{Z}}_{i}\right) \stackrel{\text { def }}{=} \underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}(=\mathbf{0})
\end{aligned}
$$

Sampson's idea: Linearize $\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right)$ (with hat!) at \mathbf{Z}_{i} (no hat!) and estimate $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$ with it

-Sampson's Idea

Linearize $\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right)$ at \mathbf{Z}_{i} per correspondence and estimate $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$ with it have: $\boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)$, want: $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$

$$
\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right) \approx \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)} \stackrel{\text { def }}{=} \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\mathbf{J}\left(\mathbf{Z}_{i}\right) \mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right) \stackrel{!}{=} 0
$$

Illustration on circle fitting

We are estimating distance from point \mathbf{x} to circle \mathcal{V}_{C} of radius r in canonical position. The circle is $\varepsilon(\mathbf{x})=\|\mathbf{x}\|^{2}-r^{2}=0$. Then

$$
\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x})+\underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x})=2 \mathbf{x}^{\top}} \underbrace{(\hat{\mathbf{x}}-\mathbf{x})}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})}=\cdots=2 \mathbf{x}^{\top} \hat{\mathbf{x}}-\left(r^{2}+\|\mathbf{x}\|^{2}\right) \stackrel{\text { def }}{=} \varepsilon_{L}(\hat{\mathbf{x}})
$$

and $\varepsilon_{L}(\hat{\mathbf{x}})=0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^{2}+\|\mathbf{x}\|^{2}}{2\|\mathbf{x}\|} \quad$ not tangent to \mathcal{V}_{C}, outside!

-Sampson Error Approximation

In general, the Taylor expansion is

$$
\boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}=\underbrace{\varepsilon\left(\mathbf{Z}_{i}\right)}_{\boldsymbol{\varepsilon}_{i} \in \mathbb{R}^{n}}+\underbrace{\mathbf{J}\left(\mathbf{Z}_{i}\right)}_{\mathbf{J}_{i} \in \mathbb{R}^{n, d}} \underbrace{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}_{\mathbf{e}_{i} \in \mathbb{R}^{d}} \stackrel{!}{=} 0
$$

to find $\hat{\mathbf{Z}}_{i}$ closest to \mathbf{Z}_{i}, we estimate \mathbf{e}_{i} from ε_{i} by minimizing
per correspondence \mathbf{X}_{i}

$$
\mathbf{e}_{i}^{*}=\arg \min _{\mathbf{e}_{i}}\left\|\mathbf{e}_{i}\right\|^{2} \quad \text { subject to } \quad \boldsymbol{\varepsilon}_{i}+\mathbf{J}_{i} \mathbf{e}_{i}=0
$$

which gives a closed-form solution
$\circledast \mathrm{P} 1 ; 1 \mathrm{pt}:$ derive \mathbf{e}_{i}^{*}

$$
\begin{aligned}
\mathbf{e}_{i}^{*} & =-\mathbf{J}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i} \\
\left\|\mathbf{e}_{i}^{*}\right\|^{2} & =\boldsymbol{\varepsilon}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}
\end{aligned}
$$

- note that \mathbf{J}_{i} is not invertible!
- we often do not need $\hat{\mathbf{Z}}_{i}$, just the squared distance $\left\|\mathbf{e}_{i}\right\|^{2} \quad$ exception: triangulation \rightarrow Slide 100
- the unknown parameters \mathbf{F} are inside: $\mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{F}), \boldsymbol{\varepsilon}_{i}=\boldsymbol{\varepsilon}_{i}(\mathbf{F}), \mathbf{J}_{i}=\mathbf{J}_{i}(\mathbf{F})$

-Sampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

$$
\mathbf{F}^{*}=\arg \min _{\mathbf{F}, \text { rank } \mathbf{F}=2} \sum_{i=1}^{k} e_{i}^{2}(\mathbf{F})
$$

Let $\mathbf{F}=\left[\begin{array}{lll}\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3}\end{array}\right]$ (per columns) $=\left[\begin{array}{c}\left(\mathbf{F}^{1}\right)^{\top} \\ \left(\mathbf{F}^{2}\right)^{\top} \\ \left(\mathbf{F}^{3}\right)^{\top}\end{array}\right]$ (per rows), $\mathbf{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, then

Sampson

$$
\begin{array}{rlrl}
\varepsilon_{i} & =\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i} & \varepsilon_{i} \in \mathbb{R} & \text { scalar algebraic error from Slide 81 } \\
\mathbf{J}_{i} & =\left[\frac{\partial \varepsilon_{i}}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}}{\partial v_{i}^{2}}\right] & \mathbf{J}_{i} \in \mathbb{R}^{1,4} & \text { derivatives over point coords. } \\
e_{i}^{2}(\mathbf{F}) & =\frac{\varepsilon_{i}^{2}}{\left\|\mathbf{J}_{i}\right\|^{2}} & e_{i} \in \mathbb{R} & \text { Sampson error } \\
\mathbf{J}_{i}=\left[\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}}_{i},\left(\mathbf{F}^{1}\right)^{\top} \underline{\mathbf{x}}_{i},\left(\mathbf{F}^{2}\right)^{\top} \underline{\mathbf{x}}_{i}\right] & e_{i}^{2}(\mathbf{F})=\frac{\left(\mathbf{y}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}\right)^{2}}{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F} \underline{\mathbf{y}}_{i}\right\|^{2}}
\end{array}
$$

- Sampson correction 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$
- actual optimization not yet covered \rightarrow Slide 103

-Back to Triangulation: The Golden Standard Method

We are given $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a single correspondence $x \leftrightarrow y$ and we look for 3D point \mathbf{X} projecting to x and y.
\rightarrow Slide 85

Idea:

1. compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}$, e.g. $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\mathbf{q}_{1}-\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right) \mathbf{q}_{2}\right]_{\times}$
2. correct measurement by the linear estimate of the correction vector
\rightarrow Slide 98

$$
\left[\begin{array}{l}
\hat{u}^{1} \\
\hat{v}^{1} \\
\hat{u}^{2} \\
\hat{v}^{2}
\end{array}\right] \approx\left[\begin{array}{l}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\varepsilon}{\|\mathbf{J}\|^{2}} \mathbf{J}^{\top}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\mathbf{y}^{\top} \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S F} \underline{\mathbf{x}}\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}\right\|^{2}}\left[\begin{array}{l}
\left(\mathbf{F}_{1}\right)^{\top} \mathbf{y} \\
\left(\mathbf{F}_{2}\right)^{\top} \mathbf{y} \\
\left(\mathbf{F}^{1}\right)^{\top} \mathbf{x} \\
\left(\mathbf{F}^{2}\right)^{\top} \mathbf{x}
\end{array}\right]
$$

3. use the SVD algorithm with numerical conditioning

Ex (cont'd from Slide 89):

X_{T} - noiseless ground truth position

- - reprojection error minimizer
X_{s} - Sampson-corrected algebraic error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

Levenberg-Marquardt (LM) Iterative Estimation

Consider error function $\mathbf{e}_{i}(\boldsymbol{\theta})=f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\theta}\right) \in \mathbb{R}^{m}, \quad$ with $\mathbf{x}_{i}, \mathbf{y}_{i}$ given, $\theta \in \mathbb{R}^{q}$ unknown $\theta=\mathbf{F}, q=9, m=1$ for f.m. estimation
Our goal: $\quad \boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}\left\|\mathbf{e}_{i}(\boldsymbol{\theta})\right\|^{2}$
Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2, \ldots$

$$
\begin{equation*}
\boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s}, \quad \text { where } \quad \mathbf{d}_{s}=\arg \min _{\mathbf{d}} \sum_{i=1}^{k}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}\right)\right\|^{2} \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}\right) & \approx \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)+\mathbf{L}_{i} \mathbf{d}, \\
\left(\mathbf{L}_{i}\right)_{j l} & =\frac{\partial\left(\mathbf{e}_{i}(\boldsymbol{\theta})\right)_{j}}{\partial(\boldsymbol{\theta})_{l}}, \quad \mathbf{L}_{i} \in \mathbb{R}^{m, q} \quad \text { typically a long matrix }
\end{aligned}
$$

Then the solution to Problem (15) is a set of normal eqs

$$
\begin{equation*}
-\underbrace{\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)}_{\mathbf{e} \in \mathbb{R}^{q, 1}}=\underbrace{\left(\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)}_{\mathbf{L} \in \mathbb{R}^{q, q}} \mathbf{d}_{s} \tag{16}
\end{equation*}
$$

- \mathbf{d}_{s} can be solved for by Gaussian elimination using Choleski decomposition of \mathbf{L} \mathbf{L} symmetric \Rightarrow use Choleski, almost $2 \times$ faster than Gauss-Seidel, see bundle adjustment
- such updates do not lead to stable convergence \longrightarrow ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ with $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \mathbf{I}$ for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\lambda \sum_{i} \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)$ to adapt to local curvature:

$$
-\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{i=1}^{k}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \operatorname{diag} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)\right) \mathbf{d}_{s}
$$

Idea 4 (Marquardt): adaptive λ small $\lambda \rightarrow$ Gauss-Newton, large $\lambda \rightarrow$ gradient descend

1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_{s}
2. if $\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}_{s}\right)\right\|^{2}<\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)\right\|^{2}$ then accept \mathbf{d}_{s} and set $\lambda:=\lambda / 10, s:=s+1$
3. otherwise set $\lambda:=10 \lambda$ and recompute \mathbf{d}_{s}

- sometimes different constants are needed for the 10 and 10^{-3}
- note that $\mathbf{L}_{i} \in \mathbb{R}^{m, q}$ (long matrix) but each contribution $\mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ is a square singular $q \times q$ matrix (always singular for $k<q$)
- error can be made robust to outliers, see the trick on Slide 106
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation)

See [Triggs et al. 1999, Sec. 4.3]

- λ helps avoid the consequences of gauge freedom \rightarrow Slide 136

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates $u^{1}, v^{1}, u^{2}, v^{2}$)

$$
e_{i}^{2}(\mathbf{F})=\frac{\varepsilon_{i}^{2}}{\left\|\mathbf{J}_{i}\right\|^{2}}=\frac{\left(\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}\right)^{2}}{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}} \quad \mathbf{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

LM (by linearization over parameters \mathbf{F})

$$
\mathbf{L}_{i}=\frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}}=\frac{1}{2\left\|\mathbf{J}_{i}\right\|}\left[\left(\underline{\mathbf{y}}_{i}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F} \underline{\mathbf{x}}_{i}\right) \underline{\mathbf{x}}_{i}^{\top}+\underline{\mathbf{y}}_{i}\left(\underline{\mathbf{x}}_{i}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right)^{\top}\right]
$$

- \mathbf{L}_{i} is a 3×3 matrix, must be reshaped to dimension- 9 vector
- $\underline{\mathbf{x}}_{i}$ and $\underline{\mathbf{y}}_{i}$ in Sampson error are normalized to unit homogeneous coordinate
- reinforce $\operatorname{rank} \mathbf{F}=2$ after each LM update to stay in the fundamental matrix manifold and $\|\mathbf{F}\|=1$ to avoid gauge freedom
(by SVD, see Slide 104)
- LM linearization could be done by numerical differentiation (small dimension)

-Local Optimization for Fundamental Matrix Estimation

Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k>7$ inlier correspondences, compute an efficient estimate for fundamental matrix \mathbf{F}.

1. Find the conditioned (\rightarrow Slide 88) 7-point $\mathbf{F}_{0}(\rightarrow$ Slide 81) from a suitable 7-tuple
2. Improve the \mathbf{F}_{0}^{*} using the LM optimization (\rightarrow Slides 101-102) and the Sampson error $\left(\rightarrow\right.$ Slide 103) on all inliers, reinforce rank-2, unit-norm \mathbf{F}_{k}^{*} after each LM iteration using SVD

- if there are no wrong matches (outliers), this gives a local optimum
- contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

-The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points $X=\left\{x_{i}\right\}_{i=1}^{m}$ and $Y=\left\{y_{j}\right\}_{j=1}^{n}$ and their descriptors D, find the most probable

1. inliers $S_{X} \subseteq X, S_{Y} \subseteq Y$
2. one-to-one perfect matching $M: S_{X} \rightarrow S_{Y}$
perfect matching: 1-factor of the bipartite graph
3. fundamental matrix \mathbf{F} such that $\operatorname{rank} \mathrm{F}=2$
4. such that for each $x_{i} \in S_{X}$ and $y_{j}=M\left(x_{i}\right)$ it is probable that
a. the image descriptor $D\left(x_{i}\right)$ is similar to $D\left(y_{j}\right)$, and
b. the total geometric error $\sum_{i j} e_{i j}^{2}(\mathbf{F})$ is small note a slight change in notation: $e_{i j}$
5. inlier-outlier and outlier-outlier matches are improbable

$$
\begin{equation*}
\left(M^{*}, \mathbf{F}^{*}\right)=\arg \max _{M, \mathbf{F}} p(M, \mathbf{F} \mid X, Y, D) \tag{17}
\end{equation*}
$$

- probabilistic model: an efficient language for task formulation
- the (17) is a p.d.f. for all the involved variables
(there is a constant number of variables!)
- binary matching table $M_{i j} \in\{0,1\}$ of fixed size $m \times n$
- each row/column contains at most one unity
- zero rows/columns correspond to unmatched point x_{i} / y_{j}

Deriving A Robust Matching Model by Marginalization

For algorithmic efficiency, instead of $\left(M^{*}, \mathbf{F}^{*}\right)=\arg \max _{M, \mathbf{F}} p(M, \mathbf{F} \mid X, Y, D)$ we will solve

$$
\begin{equation*}
\mathbf{F}^{*}=\arg \max _{\mathbf{F}} p(\mathbf{F} \mid X, Y, D) \tag{18}
\end{equation*}
$$

by marginalization of $p(M, \mathbf{F} \mid X, Y, D)$ over $M \quad$ this simplification changes the problem!

$$
p(M, \mathbf{F} \mid X, Y, D) \simeq p(M, \mathbf{F}, X, Y, D)=p(X, Y, D, M \mid \mathbf{F}) \cdot p(\mathbf{F})
$$

assuming correspondence-wise independence:

$$
p(X, Y, D, M \mid \mathbf{F})=\prod_{i=1}^{m} \prod_{j=1}^{n} p\left(x_{i}, y_{j}, D, m_{i j} \mid \mathbf{F}\right) \stackrel{\text { def }}{=} \prod_{i=1}^{m} \prod_{j=1}^{n} p_{e}\left(e_{i j}, d_{i j}, m_{i j} \mid \mathbf{F}\right)
$$

- $e_{i j}$ represents geometric error for match $x_{i} \leftrightarrow y_{i}: e_{i j}\left(x_{i}, y_{i} \mid \mathbf{F}\right)$
- $d_{i j}$ represents descriptor similarity for match $x_{i} \leftrightarrow y_{i}: d_{i j}=\left\|\mathbf{d}\left(x_{i}\right)-\mathbf{d}\left(y_{j}\right)\right\|$

Marginalization:

$$
\begin{array}{r}
\sum_{m_{11} \in\{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{m n}} p(X, Y, D, M \mid \mathbf{F})=\sum_{m_{11}} \sum_{m_{12}} \cdots \sum_{m_{m n}} \prod_{i=1}^{m} \prod_{j=1}^{n} p_{e}\left(e_{i j}, d_{i j}, m_{i j} \mid \mathbf{F}\right)= \\
=\cdots=\prod_{i=1}^{m} \prod_{j=1}^{n} \underbrace{\sum_{m_{i j} \in\{0,1\}} p_{e}\left(e_{i j}, d_{i j}, m_{i j} \mid \mathbf{F}\right)}_{\text {we will continue with this term }}=p(X, Y, D \mid \mathbf{F})
\end{array}
$$

Robust Matching Model (cont'd)

$$
\begin{align*}
& \sum_{m_{i j} \in\{0,1\}} p_{e}\left(e_{i j}, d_{i j}, m_{i j} \mid \mathbf{F}\right)=\sum_{m_{i j} \in\{0,1\}} p_{e}\left(e_{i j}, d_{i j} \mid m_{i j}, \mathbf{F}\right) \cdot p\left(m_{i j} \mid \mathbf{F}\right)= \\
& =\underbrace{p_{e}\left(e_{i j}, d_{i j} \mid m_{i j}=1, \mathbf{F}\right)}_{p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)} \cdot \underbrace{p\left(m_{i j}=1 \mid \mathbf{F}\right)}_{1-\alpha_{0}}+\underbrace{p_{e}\left(e_{i j}, d_{i j} \mid m_{i j}=0, \mathbf{F}\right)}_{p_{0}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)} \cdot \underbrace{p\left(m_{i j}=0 \mid \mathbf{F}\right)}_{\alpha_{0}}= \\
& =\left(1-\alpha_{0}\right) p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)+\alpha_{0} p_{0}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right) \tag{19}
\end{align*}
$$

- the $p_{0}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right) \approx$ const is a penalty for 'missing a correspondence' but it should be a p.d.f. (cannot be a constant) (see Slide 108 for a simplification)

$$
\alpha_{0} \rightarrow 1, \quad p_{0} \rightarrow 0 \quad \text { so that } \quad \frac{\alpha_{0}}{1-\alpha_{0}} p_{0} \approx \text { const }
$$

- the $p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)$ is typically an easy-to-design component: assuming independence of geometric error and descriptor similarity:

$$
p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)=p_{1}\left(e_{i j} \mid \mathbf{F}\right) \cdot p_{1}\left(d_{i j}\right)
$$

- we choose, eg.

$$
\begin{equation*}
p_{1}\left(e_{i j} \mid \mathbf{F}\right)=\frac{1}{T_{e}\left(\sigma_{1}, \mathbf{F}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}{ }^{2}}}, \quad p_{1}\left(d_{i j}\right)=\frac{1}{T_{d}\left(\sigma_{d}, \operatorname{dim} \mathbf{d}\right)} e^{-\frac{\left\|\mathbf{d}\left(x_{i}\right)-\mathbf{d}\left(y_{j}\right)\right\|^{2}}{2 \sigma_{d}^{2}}} \tag{20}
\end{equation*}
$$

- $\sigma_{1}, \sigma_{d}, \alpha_{0}$ are 'hyper-parameters'
- the form of $T\left(\sigma_{1}, \mathbf{F}\right)$ depends on error definition
- we will continue with the result from (19)

-Simplified Robust Energy (Error) Function

- assuming the choice of p_{1} as in (20), we are simplifying

$$
\begin{equation*}
p(X, Y, D \mid \mathbf{F})=\prod_{i=1}^{m} \prod_{j=1}^{n}\left[\left(1-\alpha_{0}\right) p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)+\alpha_{0} p_{0}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)\right] \tag{21}
\end{equation*}
$$

- we define 'energy' as: $V(x)=-\log p(x)$
this helps simplify the formulas
- for simplicity, we omit $d_{i j}$
- we choose $\sigma_{0} \gg \sigma_{1}$ and the missed-correspondence penalty function as

$$
p_{0}\left(e_{i j} \mid \mathbf{F}\right)=\frac{1}{T_{e}\left(\sigma_{0}, \mathbf{F}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{0}^{2}}}
$$

- then

$$
\begin{aligned}
& \text { then } \\
& \qquad V(X, Y, D \mid \mathbf{F})=\sum_{i=1}^{m} \sum_{j=1}^{n}[-\underbrace{\log \frac{1-\alpha_{0}}{T_{e}\left(\sigma_{1}, \mathbf{F}\right)}}_{\Delta(\mathbf{F})}-\log (e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}{ }^{2}}}+\underbrace{\left.\frac{\alpha_{0}}{1-\alpha_{0}} \frac{T_{e}\left(\sigma_{1}, \mathbf{F}\right)}{T_{e}\left(\sigma_{0}, \mathbf{F}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{0}^{2}}}\right)}_{t \approx \text { const }}]
\end{aligned}
$$

- by choosing representative of F such that $\Delta(\mathrm{F})=$ const, we get

$$
\begin{equation*}
V(X, Y, D \mid \mathbf{F})=m n \Delta+\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}{ }^{2}}}+t\right)}_{\hat{V}\left(e_{i j}\right)} \tag{22}
\end{equation*}
$$

note that m, n are fixed

－The Action of the Robust Matching Model on Data

Example for $\hat{V}(e)$ from（22）：

$$
\begin{aligned}
& \text { red - the usual (non-robust) error when } t=0 \\
& \text { blue - the rejected correspondence penalty } t \\
& \text { green - 'robust energy' (22) }
\end{aligned}
$$

－if the error of a correspondence exceeds a limit，it is ignored
－then $\hat{V}(e)=$ const and we essentially count outliers in（22）
－t controls the＇turn－off＇point
－the inlier／outlier threshold is e_{T} is the error for which

$$
\left(1-\alpha_{0}\right) p_{1}\left(e_{T}\right)=\alpha_{0} p_{0}\left(e_{T}\right): \quad \text { note that } t \approx 0
$$

$$
e_{T}=\sigma_{1} \sqrt{-\log t^{2}}
$$

The full optimization problem is（18）：

$$
\mathbf{F}^{*}=\arg \max _{\mathbf{F}} p(\mathbf{F} \mid X, Y, D)=\arg \max _{\mathbf{F}} \frac{\overbrace{p(X, Y, D \mid \mathbf{F})}}{\mathrm{l}^{\text {likelihood }} \cdot \overbrace{p(\mathbf{F})}^{\text {prior }}} \underbrace{p(X, Y, D)}_{\text {evidence }}=, ~=\arg \min _{\mathbf{F}}\{V(X, Y, D \mid \mathbf{F})+V(\mathbf{F})\},
$$

－typically we take $V(\mathbf{F})=0$ unless we need to stabilize a computation，e．g．when video camera moves smoothly（on a high－mass vehicle）and we have a prediction for \mathbf{F}
－evidence is not needed unless we want to comnare different models

Discussion: On The Art of Probabilistic Model Design. . .

- a few models for fitting zero-centered circle C of radius r to points in \mathbb{R}^{2}
marginalized over C

$(\iota \mid \mathbf{x}) d$
orthogonal deviation from C

$\frac{1}{2 \pi \Gamma\left(\frac{r^{2}}{\sigma}\right)} \frac{1}{\|\mathbf{x}\|^{2}}\left(\frac{r\|\mathbf{x}\|}{\sigma}\right)^{\frac{r^{2}}{\sigma}} e^{-\frac{r\|\mathbf{x}\|}{\sigma}}$
- peak at the center
- unusable for small radii
- tends to Dirac distrib.

Sampson approximation

$$
\frac{1}{r \sigma \sqrt{(2 \pi)^{3}}} e^{-\frac{e^{2}(\mathbf{x} ; r)}{2 \sigma^{2}}}
$$

- mode at the circle
- hole at the center
- tends to normal distrib.

How To Find the Global Maxima (Modes) of a PDF?

- averaged over 10^{4} trials
- number of proposals before $\left|x-x_{\text {true }}\right| \leq$ step
- uniform and Gibbs give the theoretical result
- consider the function $p(x)$ at left p.d.f. on $[0,1]$, mode at 0.1
- consider several methods:

1. exhaustive search
```
step = 1/(iterations-1);
for x = 0:step:1
    if p(x) > bestp
    bestx = x; bestp = p(x);
    end
end
```

- slow algorithm (definite quantization); faster variants
exist - fast to implement

2. randomized search with uniform sampling
```
x = rand(1);
if p(x) > bestp
    bestx = x; bestp = p(x);
end
```

- slow algorithm but better convergence - fast to implement - how to stop it?

3. random sampling from $p(x)$ (Gibbs sampler)

- faster algorithm • fast to implement but often infeasible (e.g. when $p(x)$ is data dependent (our case))

4. Metropolis-Hastings sampling

- almost as fast (with care) - not so fast to implement • rarely infeasible - RANSAC belongs here

How To Generate Random Samples from a Complex Distribution?

- red: probability density function $p(x)$ of a toy distribution on the unit interval target distribution

$$
\begin{gathered}
p(x)=\sum_{i=1}^{4} \alpha_{i} \operatorname{Be}\left(x ; \alpha_{i}, \beta_{i}\right), \sum_{i=1}^{4} \alpha_{i}=1, \alpha_{i} \geq 0 \\
\operatorname{Be}(x ; \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}
\end{gathered}
$$

- note we can generate samples from this $p(x)$ how?
- suppose we cannot sample from $p(x)$ but we can sample from some 'simple' distribution, given the last sample x_{0} (blue) proposal distribution

$$
q\left(x \mid x_{0}\right)= \begin{cases}\mathrm{U}_{0,1}(x) & \text { (independent) uniform sampling } \\ \operatorname{Be}\left(x ; \frac{x_{0}}{T}+1, \frac{1-x_{0}}{T}+1\right) & \text { 'beta' diffusion (crawler) } T \text { - temperature } \\ p(x) & \text { (independent) Gibbs sampler }\end{cases}
$$

- note we have unified all the random sampling methods on the previous slide
- how to transform proposal samples $q\left(x \mid x_{0}\right)$ to target distribution $p(x)$ samples?

Metropolis-Hastings (MH) Sampling

C - configuration (of all variable values) \quad Here $C=\mathbf{F}$ and $p(C)=p(\mathbf{F} \mid X, Y, D)$ Goal: Generate a sequence of random samples $\left\{C_{i}\right\}$ from $p(C)$

- setup a Markov chain with a suitable transition probability function so that it generates the sequence

Sampling procedure

1. given C_{i}, generate random sample S from $q\left(S \mid C_{i}\right)$
q may use some information from C_{i} (Hastings)
2. compute acceptance ratio the evidence term drops out

$$
a=\frac{p(S)}{p\left(C_{i}\right)} \cdot \frac{q\left(C_{i} \mid S\right)}{q\left(S \mid C_{i}\right)}
$$

3. generate random number u from unit-interval uniform distribution $\mathrm{U}_{0,1}$
4. if $u<a$ then $C_{i+1}:=S$ else $C_{i+1}:=C_{i}$

'Programing’ an MH sampler

1. design a proposal distribution (mixture) q and a sampler from q
2. write functions $q\left(C_{i} \mid S\right)$ and $q\left(S \mid C_{i}\right)$ that are proper distributions not always simple Finding the mode

- remember the best sample fast implementation but must wait long to hit the mode
- use simulated annealing very slow
- start local optimization from the best sample good trade-off between speed and accuracy

MH Sampling Demo

sampling process (video, 7:33, 100k samples)

- blue point: current sample
- green circle: best sample so far quality $=\pi(x)$
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states

initial sample

final distribution of visited states

Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
    T = 0.01; % temperature
    x = betarnd((x0)/T+1, (1-x0)/T+1);
end
function p = proposal_q(x, x0)
% proposal distribution q(x | x0)
    T = 0.01;
    p = betapdf (x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
    % shape parameters:
    a = [2 40 100 6];
    b = [10 [40 20 1];
    % mixing coefficients:
    w = [11 0.4 0.253 0.50]; w = w/sum(w);
    p = 0;
    for i = 1:length(a)
    p = p + w(i)*betapdf(x,a(i),b(i));
    end
end
```

```
%% DEMO script
k = 10000; % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1:k
    x1 = proposal_gen(x0);
    a = target_p(x1)/target_p(x0) * ...
        proposal_q(x0,x1)/proposal_q(x1,x0);
    if rand < a
        X(i) = x1; x0 = x1;
    else
    X(i) = x0;
    end
end
figure(1)
x = 0:0.001:1;
plot(x, target_p(x), 'r', 'linewidth',2);
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1);
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```


-From MH Sampling to RANSAC

- configuration $=k$-tuple of inlier correspondences
the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples
- data-driven proposals q :

1. select k-tuple from data independently and uniformly $q(S)=\binom{m n}{k}^{-1}$
2. solve the minimal geometric problem \mapsto geometry proposal (e.g. \mathbf{F} from $k=7$)

- independent sampling $a=\frac{p\left(S^{\prime}\right)}{p\left(S_{i}\right)} \cdot \frac{q\left(S_{i}\right)}{q\left(S^{\prime}\right)}$

1. q uniform, then $a=\frac{p\left(S^{\prime}\right)}{p\left(S_{i}\right)}$

MAPSAC $(p(S)$ includes the prior)
2. q dependent on descriptor similarity PROSAC (similar pairs are proposed more often)

LO-MAPSAC

1. generate random sample S_{b} from $q(S)$
2. set initial $N:=\binom{m n}{k}$
3. repeat N-times:
a. generate random sample S^{\prime} from $q(S)$
b. if $p\left(S^{\prime}\right)>p\left(S_{b}\right)$ then
i. $S_{b}:=S^{\prime}$
ii. threshold-out inliers
iii. start local optimization from S_{b} and update S_{b} with the result
iv. re-estimate N from inlier counts using the standard formula for RANSAC termination, see Slide 117
4. output S_{b}

- see the MPV course for RANSAC details
see also [Fischler \& Bolles 1981], [25 years of RANSAC]

-Stopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

$$
N \geq \frac{\log (1-P)}{\log \left(1-(1-w)^{s}\right)}
$$

- $(1-w)^{s}$ - proposal does not contain an outlier
- $1-(1-w)^{s}$ - proposal contains at least one outlier
- $1-P=$ all proposals contained an outlier $=\left(1-(1-w)^{s}\right)^{N}$
P - probability that at least one sample is all-inlier
w - the fraction of outliers among tentative correspondences
s - sample size (7 in 7-point algorithm)

N for $s=7$		
	P	
w	0.8	0.99
0.5	205	590
0.8	$1.3 \cdot 10^{5}$	$3.5 \cdot 10^{5}$
0.9	$1.6 \cdot 10^{7}$	$4.6 \cdot 10^{7}$

- N can be re-estimated using the current estimate for w (if there is LO, then after LO)
the quasi-posterior estimate for w is the average over all samples generated so far
- for $w \rightarrow 1$ we gain nothing over the standard MH-sampler stoppig criterion

-The Difference between RANSAC and a General MH Sampler

RANSAC $=$ five ideas: [Fischler \& Bolles 1981]

1. proposal distribution is given by the empirical distribution of data sample:

- pairs of points define line distribution from $p(\mathbf{n} \mid X)$ (left)
- random correspondence tuples drawn uniformly propose samples of \mathbf{F} from a data-driven distribution $q(\mathbf{F} \mid X, Y)$

2. stopping based on the probability of mode-hitting
\rightarrow Slide 117
3. standard RANSAC replaces probability maximization with consensus maximization

the e_{T} is the inlier/outlier threshold from (23)
4. when counting inliers, do not work with all $m_{i j}$ but with a set of tentative correspondences that form a matching, e.g. selected by stable matching:
a. find a pair $m_{i j}$ of greatest $p_{1}\left(d_{i j}\right)$ and remember it
b. remove row i and column j from the matching table (needs some bookkeeping and reindexing)
c. repeat Steps a-c until the table is empty
d. return the remembered set
5. each time a new best sample occurs, start local optimization from inliers
or LO weighted by posterior $p\left(m_{i j}\right)$ [Chum et al. 2003] LM optimization with Sampson error (and re-weighting)

Example Matching Results for the 7-point Algorithm with RANSAC

input images

interest points (ca. 3600) tentative corresp. (416)

matching (340) notice wrong matches

- the minimization os over a discrete set of epipolar geometries proposable from 7-tuples

Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid

Model

- principal point known, square pixel
- explicit variables

1. two unknown vanishing points v_{1}, v_{2}

- latent variables

1. each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset$ represents an outlier
2. 'mother lines' passing through vanishing points

$$
\arg \min _{v_{1}, v_{2}, \Lambda, L} V\left(v_{1}, v_{2}, \Lambda, L \mid S\right)
$$

Beyond RANSAC

Note that by simplification in (18) on Slide 106 we have lost constraints on M (eg. uniqueness). One can choose a better model when not marginalizing:

$$
p(M, \mathbf{F}, X, Y, D)=\underbrace{p(X, Y \mid M, \mathbf{F})}_{\text {geometric error }} \cdot \underbrace{p(D \mid M)}_{\text {similarity }} \cdot \underbrace{p(M)}_{\text {constraints }} \cdot \underbrace{p(\mathbf{F})}_{\text {prior }}
$$

this is a global model: decisions on $m_{i j}$ are no longer independent!
In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid X, Y, D)$, then $S=(M, \mathbf{F})$
- explicit labeling $m_{i j}$ can be done by, e.g. sampling from

$$
q\left(m_{i j} \mid \mathbf{F}\right) \sim\left(\left(1-\alpha_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{F}\right), \alpha_{0} p_{0}\left(e_{i j} \mid \mathbf{F}\right)\right)
$$

when $p(M)$ uniform then always accepted, $a=1$

* derive
- additional proposals from $q(\mathbf{F} \mid M)$ are possible, with explicit inliers Hybrid Monte Carlo
- we can compute the posterior probability of each match $p\left(m_{i j}\right)$ by histogramming $m_{i j}$ over $\left\{S_{i}\right\}$
- local optimization can then use explicit inliers and $p\left(m_{i j}\right)$
- error can be estimated for elements of \mathbf{F} from $\left\{S_{i}\right\}$
does not work in RANSAC!
- large error indicates problem degeneracy this is not directly available in RANSAC
- good conditioning is not a requirement we work with the entire distribution $p(\mathbf{F})$
- one can find the most probable number of epipolar geometries
by reversible jump MCMC (homographies or other models)
if there are multiple models explaning data, RANSAC will return one of them randomly

Part VI

3D Structure and Camera Motion

21) Introduction

22 Reconstructing Camera Systems
(23) Bundle Adjustment
covered by
[1] [H\&Z] Secs: $9.5 .3,10.1,10.2,10.3,12.1,12.2,12.4,12.5,18.1$
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.

-Constructing Cameras from the Fundamental Matrix

Given \mathbf{F}, construct some cameras $\mathbf{P}_{1}, \mathbf{P}_{2}$ such that \mathbf{F} is their fundamental matrix.

Solution

See [H\&Z, p. 256]
where

- $\underline{\mathbf{v}}$ is any 3-vector, e.g. $\underline{\mathbf{v}}=\underline{\mathbf{e}}_{1}$ to make the camera finite
- $\lambda \neq 0$ is a scalar,
- $\underline{\mathbf{e}}_{2}=\operatorname{null}\left(\mathbf{F}^{\top}\right)$, i.e. $\underline{\mathbf{e}}_{2}^{\top} \mathbf{F}=0$

Proof

1. \mathbf{S} is antisymmetric iff $\mathbf{x}^{\top} \mathbf{S} \mathbf{x}=0$ for all \mathbf{x}
2. we have $\underline{\mathbf{x}} \simeq \mathbf{P} \underline{X}$
3. a non-zero \mathbf{F} is a f.m. iff $\mathbf{P}_{2}^{\top} \mathbf{F} \mathbf{P}_{1}$ is antisymmetric
4. if $\mathbf{P}_{1}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$ and $\mathbf{P}_{2}=\left[\begin{array}{ll}\mathbf{S F} & \underline{\mathbf{e}}_{2}\end{array}\right]$ then \mathbf{F} corresponds to $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ by Step 3
5. we can write $\mathbf{S}=[\mathbf{s}]_{\times}$
6. a suitable choice is $\mathbf{s}=\underline{\mathbf{e}}_{2}$
7. for the full the class including \mathbf{v}, see [H\&Z, Sec. 9.5]

- The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_{i} are constrained, then for any number of cameras $i=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i}=\mathbf{P}_{i} \underline{\mathbf{X}}=\underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}_{i}^{\prime}} \underbrace{\mathbf{H X}}_{\underline{\mathbf{X}}^{\prime}}=\mathbf{P}_{i}^{\prime} \underline{\mathbf{X}}^{\prime}
$$

- when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_{i}), they are given up to a common 3D homography \mathbf{H}
(translation, rotation, scale, shear, pure perspectivity)

- when cameras are internally calibrated (\mathbf{K}_{i} known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{i} [H\&Z, Secs. 10.2, 10.3], [Longuet \& Higgins 81] (translation, rotation, scale)

Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$
\rightarrow Slides 78 and 138 on representing \mathbf{E}
 We construct camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4} \rightarrow$ SI

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{l}\hat{\mathbf{P}}_{i} \\ \hat{\mathbf{P}}_{j}\end{array}\right]=\left[\begin{array}{cc}\mathbf{K}_{i}\left[\begin{array}{ll}\mathbf{I} & \mathbf{0} \\ \mathbf{K}_{j}\left[\hat{\mathbf{R}}_{i j}\right. & \left.\hat{\mathbf{t}}_{i j}\right]\end{array}\right] \in \mathbb{R}^{6,4}\end{array} .\right.
$$

- singletons i, j correspond to vertices $V \quad k$ vertices
- pairs $i j$ correspond to graph edges $E \quad p$ edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{24}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\mathbb{R}^{6,4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\mathbb{R}^{6,4}}
$$

- \mathbf{K}_{i} removed on both sides of eq. (24)
- (24) is a linear system of $24 p$ eqs. in $7 p+6 k$ unknowns $\quad 7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
- each \mathbf{P}_{i} appears on the right side as many times as is the degree of vertex $\mathbf{P}_{i} \quad$ eg. P_{5} 3-times

-cont'd

Eq. (24) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{j}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{25}
\end{equation*}
$$

- note transformations that do not change these equations
assuming no error in $\hat{\mathbf{R}}_{i j}$

$$
\text { 1. } \quad \mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}, \quad \text { 2. } \quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i} \text { and } s_{i j} \mapsto \sigma s_{i j}, \quad \text { 3. } \quad \mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}
$$

- the global frame is fixed by e.g. selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{26}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition Slide 78 but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j}$
\rightarrow therefore make sure all points are in front of cameras and constrain $s_{i j}>0$; see Slide 80
+ pairwise correspondences are sufficient
- suitable for well-located cameras only (dome-like configurations)
otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (25)

Task: Solve $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, i, j \in V,(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{27}
\end{equation*}
$$

- fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top}{ }_{c}$-th columns of all rotation matrices stacked; $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
- then (27) becomes $\mathbf{D} \mathbf{r}^{c}=\mathbf{0}$
$\mathbf{D} \in \mathbb{R}^{3 p, 3 k}$
- $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k \quad$ in a 1-connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$

Ex: $(k=p=3)$

$$
\rightarrow \begin{aligned}
& \hat{\mathbf{R}}_{12} \mathbf{r}_{1}^{c}-\mathbf{r}_{2}^{c}=\mathbf{0} \\
& \hat{\mathbf{R}}_{23} \mathbf{r}_{2}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0} \\
& \hat{\mathbf{R}}_{13} \mathbf{r}_{1}^{c}-\mathbf{r}_{3}^{c}=\mathbf{0}
\end{aligned} \quad \rightarrow \quad \mathbf{D} \mathbf{r}^{c}=\left[\begin{array}{ccc}
\hat{\mathbf{R}}_{12} & -\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \\
\hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{r}_{1}^{c} \\
\mathbf{r}_{2}^{c} \\
\mathbf{r}_{3}^{c}
\end{array}\right]=\mathbf{0}
$$

- must hold for any c

Idea:

[Martinec \& Pajdla CVPR 2007]

1. find the space of all $r^{c} \in \mathbb{R}^{3 k}$ that solve (27) \mathbf{D} is sparse, use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$; (Matlab)
2. choose 3 unit orthogonal vectors in this space

3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD

- global world rotation is arbitrary
because $\left\|\mathbf{r}^{c}\right\|=1$ is necessary but insufficient $\mathbf{R}_{i}^{*}=\mathbf{U V}^{\top}$, where $\mathbf{R}_{i}=\mathbf{U D V}^{\top}$

Finding The Translation Component in Eq. (25)

From eqs. (25) and (26): d - rank of camera center set $p-$ No. of pairs, $k-$ No. of cameras

$$
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}-\mathbf{t}_{j}=\mathbf{0}, \quad \sum_{i=1}^{k} \mathbf{t}_{i}=\mathbf{0}, \quad \sum_{i, j} s_{i j}=p, \quad s_{i j}>0, \quad \mathbf{t}_{i} \in \mathbb{R}^{d}
$$

- in rank $d: d \cdot p+d+1$ equations for $d \cdot k+p$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1}$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?

$$
p=k-1
$$

$$
k=p=3
$$

$$
k=p=4
$$

$k \leq 2$ for any $d \quad d \geq 2$: non-collinear ok $\quad d \geq 3$: non-planar ok $d \geq k-1$: not possible

- rank is not sufficient for chains, trees, or when $d=1$ (collinear cameras)
- 3-connectivity gives a sufficient rank for $d=3$ (cams. in general pos. in 3D)
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq \frac{3 k}{2}-2$
- 4-connectivity gives a sufficient rank for any k for $d=2$ (coplanar cams)
- since $p \geq\lceil 2 k\rceil \geq 2 k-3$
- $\frac{\text { maximal }}{k \geq 3}$ planar tringulated graphs have $p=3 k-6$ and give the rank for

cont'd

Linear equations in (25) and (26) can be rewritten to

$$
\mathbf{D t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

for $d=3: \quad \mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad$ is sparse

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Solving Eq. (25) by Stepwise Gluing

Given: Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples. Initialization

1. initialize camera cluster \mathcal{C} with P_{1}, P_{2},
2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm Slide 84
3. construct camera pair

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

4. compute 3D reconstruction $\left\{X_{i}\right\}$ per match from $M_{12} \quad$ Slide 90
5. initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$
 and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1. select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2. estimate \mathbf{P}_{j} using \mathcal{X}_{j}, RANSAC with the 3-pt alg. (P3P), projection errors $\mathbf{e}_{i j}$ in \mathcal{X}_{j} Slide 69
3. reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5. add P_{j} to \mathcal{C}
6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

Bundle Adjustment

Given:

1. set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2. set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3. fixed tentative projections $\mathbf{m}_{i j}$

Required:

1. corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2. corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent:

1. visibility decision $v_{i j} \in\{0,1\}$ per $\mathbf{m}_{i j}$

- for simplicity, \mathbf{X}, \mathbf{m} are considered direct (not homogeneous)
- we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature, where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
- for simplicity, we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

Data likelihood is

 constructed by marginalization, as in Robust Matching Model, Slide 107$$
p(\{\mathbf{m}\} \mid\{\mathbf{P}\})=\prod_{\text {pts }: i=1}^{p} \prod_{\text {cams }: j=1}^{c}\left(\left(1-\alpha_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+\alpha_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

the simplified log-likelihood is (as on Slide 108)

$$
\begin{aligned}
& \text { the simplified log-likelihood is (as on Slide 108) } \\
& V(\{\mathbf{m}\} \mid\{\mathbf{P}\})=-\log p(\{\mathbf{m}\} \mid\{\mathbf{P}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
\end{aligned}
$$

- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

$$
\begin{equation*}
\left(\mathbf{L}_{i j}\right)_{l}=\frac{\partial \nu_{i j}}{\partial \theta_{l}}=\underbrace{\frac{1}{1+t e^{e_{i j}^{2}(\theta) /\left(2 \sigma_{1}^{2}\right)}}}_{\text {small for big } e_{i j}} \cdot \frac{1}{\nu_{i j}(\theta)} \cdot \frac{1}{4 \sigma_{1}^{2}} \cdot \frac{\partial e_{i j}^{2}(\theta)}{\partial \theta_{l}} \tag{28}
\end{equation*}
$$

but the LM method stays the same as on Slides 101-102

- outliers have virtually no impact on \mathbf{d}_{s} in normal equations because of the red term in (28) that scales contributions to the sums down

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

-Sparsity in Bundle Adjustment

We have $q=3 p+11 c$ parameters: $\theta=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{c}\right)$ points, cameras We will use a running index $r=1, \ldots, k, k=p \cdot c$. Then each r corresponds to some i, j $\theta^{*}=\arg \min _{\theta} \sum_{r=1}^{k} \nu_{r}^{2}(\theta), \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s},-\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathbf{d}_{s}$
The block form of \mathbf{L}_{r} in Levenberg-Marquardt (Slide 101) is zero except in columns i and j : r-th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

- "points first, then cameras" scheme
- standard bundle adjustment eliminates points and solves cameras, then back-substitutes

Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

$$
\text { find } \mathbf{d}_{s} \text { such that } \quad-\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{k} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right) \mathrm{d}_{s}
$$

This is a linear set of equations $\mathbf{A x}=\mathbf{b}$, where

- \mathbf{A} is very large
approx. $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ for a small problem of 10000 points and 5 cameras
- \mathbf{A} is sparse and symmetric, \mathbf{A}^{-1} is dense direct matrix inversion is prohibitive

Choleski: Every symmetric positive definite matrix A can be decomposed to $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$, where \mathbf{L} is lower triangular. If \mathbf{A} is sparse then \mathbf{L} is sparse, too.

1. decompose $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$
transforms the problem to solving $\mathbf{L} \underbrace{\mathbf{L}^{\top} \mathbf{x}}_{\mathbf{c}}=\mathbf{b}$
2. solve for \mathbf{x} in two passes:

$$
\begin{array}{rrr}
\mathbf{L} \mathbf{c}=\mathbf{b} & \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) \quad \text { forward substitution, } i=1, \ldots, q \\
\mathbf{L}^{\top} \mathbf{x}=\mathbf{c} & \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right) & \text { back-substitution }
\end{array}
$$

- Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are $9 p+121 c+66 p c \approx 3.4 \cdot 10^{6}$; ca. $250 \times$ fewer than all elements
- it can be computed on single elements or on entire blocks
- use profile Choleski for sparse \mathbf{A} and diagonal pivoting for semi-definite \mathbf{A}
- λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially useful for arrowhead sparse matrices.
    [p,q] = size(A);
    if p ~= q, error 'Matrix must be square'; end
    L = sparse(q,q);
    F = ones(q,1);
    for i=1:q
        F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
        for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix must be positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


-Gauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem, Slide 124

$$
\underline{\mathbf{m}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2. Some representations are not minimal, e.g.

- \mathbf{P} is 12 numbers for 11 parameters
- we may represent \mathbf{P} in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t}$
- but \mathbf{R} is 9 numbers representing the 3 parameters of rotation

As a result

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

- fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
- imposing constraints on projective entities
- cameras, e.g. $\mathbf{P}_{3,4}=1$
this excludes affine cameras
- points, e.g. $\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1 \quad$ this way we can represent points at infinity
- using minimal representations
- points in their Euclidean representation $\mathbf{X}_{i} \quad$ but finite points may be an unrealistic model
- rotation matrix can be represented by Cayley transform see next

-Minimal Representations for Rotation

- \mathbf{o} - rotation axis, $\|\mathbf{o}\|=1, \varphi$ - rotation angle
- wanted: simple mapping to/from rotation matrices

1. Rodrigues' representation

$$
\begin{aligned}
\mathbf{R} & =\mathbf{I}+\sin \varphi[\mathbf{o}]_{\times}+(1-\cos \varphi)[\mathbf{o}]_{\times}^{2} \\
\sin \varphi[\mathbf{o}]_{\times} & =\frac{1}{2}\left(\mathbf{R}-\mathbf{R}^{\top}\right), \quad \cos \varphi=\frac{1}{2}(\operatorname{tr} \mathbf{R}-1)
\end{aligned}
$$

- hiding φ in the vector \mathbf{o} as in $[\sin \varphi \mathbf{o}]_{\times}$is not so easy
- Cayley tried:

2. Cayley's representation; let $\mathbf{a}=\mathbf{o} \tan \frac{\varphi}{2}$, then

$$
\begin{aligned}
\mathbf{R} & =\left(\mathbf{I}+[\mathbf{a}]_{\times}\right)\left(\mathbf{I}-[\mathbf{a}]_{\times}\right)^{-1} \\
{[\mathbf{a}]_{\times} } & =(\mathbf{R}+\mathbf{I})^{-1}(\mathbf{R}-\mathbf{I}) \\
\mathbf{a}_{1} \circ \mathbf{a}_{2} & =\frac{\mathbf{a}_{1}+\mathbf{a}_{2}-\mathbf{a}_{1} \times \mathbf{a}_{2}}{1-\mathbf{a}_{1}^{\top} \mathbf{a}_{2}}
\end{aligned}
$$

- no trigonometric functions
- cannot represent rotation by 180°
- explicit composition formula

3. exponential map $\mathbf{R}=\exp [\varphi \mathbf{o}]_{\times}$, inverse by Rodrigues' formula

Minimal Representations for Other Entities

1. with the help of rotation we can minimally represent

- fundamental matrix

$$
\mathbf{F}=\mathbf{U D V}^{\top}, \quad \mathbf{D}=\operatorname{diag}(d, 1,0), \quad \mathbf{U}, \mathbf{V} \text { are rotations, } \quad 3+1+3=7 \mathrm{DOF}
$$

- essential matrix

$$
\mathbf{E}=[-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \text { is rotation }, \quad\|\mathbf{b}\|=1, \quad 3+2=5 \mathrm{DOF}
$$

- camera

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right], \quad 5+3+3=11 \mathrm{DOF}
$$

2. homography can be represented via exponential map

$$
\exp \mathbf{A}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text { note: } \mathbf{A}^{0}=\mathbf{I}
$$

some properties

$$
\exp \mathbf{0}=\mathbf{I}, \quad \exp (-\mathbf{A})=(\exp \mathbf{A})^{-1}, \quad \exp (\mathbf{A}+\mathbf{B}) \neq \exp (\mathbf{A}) \exp (\mathbf{B})
$$

$$
\exp \left(\mathbf{A}^{\top}\right)=(\exp \mathbf{A})^{\top} \text { hence if } \mathbf{A} \text { antisymmetric then } \exp \mathbf{A} \text { orthogonal }
$$

$$
(\exp (\mathbf{A}))^{\top}=\exp \left(\mathbf{A}^{\top}\right)=\exp (-\mathbf{A})=(\exp (\mathbf{A}))^{-1}
$$

det $\exp \mathbf{A}=\exp (\operatorname{tr} \mathbf{A})$ a key to homography representation:

$$
\mathbf{H}=\exp \mathbf{Z} \text { such that } \operatorname{tr} \mathbf{Z}=0, \text { eg. } \mathbf{Z}=\left[\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & -\left(z_{11}+z_{22}\right)
\end{array}\right], \quad 8 \text { DOF }
$$

-Implementing Simple Constraints

What for?

1. fixing external frame $\rightarrow \theta_{i}=\theta_{i}^{0}$
'trivial gauge'
2. representing additional knowledge $\rightarrow \theta_{i}=\theta_{j} \quad$ e.g. cameras share calibration matrix \mathbf{K}

We introduce reduced parameters $\hat{\theta}$:

$$
\theta=\mathbf{T} \hat{\theta}+\mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \leq p
$$

Then \mathbf{L}_{r} in LM changes to $\mathbf{L}_{r} \mathbf{T}$ and everything else stays the same

- \mathbf{T} deletes columns of \mathbf{L}_{r} that correspond to fixed parameters it reduces the problem size
- consistent initialisation: $\theta^{0}=\mathbf{T} \hat{\theta}^{0}+\mathbf{t}$
or filter the initialization by pseudoinverse $\theta^{0} \mapsto \mathbf{T}^{\dagger} \theta^{0}$
- we need not compute derivatives for θ_{j} that correspond to all-zero rows \mathbf{T}_{j}
fixed params
- constraining projective entities \rightarrow minimal representations
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than explicit renaming of the parameters, gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/

Part VII

Stereovision

24) Introduction

25 Epipolar Rectification
26 Binocular Disparity and Matching Table
57 Image Likelihood
28 Maximum Likelihood Matching
29 Uniqueness and Ordering as Occlusion Models
30 Three-Label Dynamic Programming Algorithm
mostly covered by
Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP] additional references
C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision and Pattern Recognition Workshop, p. 73, 2003.
J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE CS Conf on Computer Vision and Pattern Recognition, vol. 1:111-117. 2001.
M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In Proc Int Conf on Computer Vision, vol. 1:496-501, 1999.

What Are The Relative Distances?

- monocular vision already gives a rough 3D sketch because we understand the scene

What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden

- we have no help from image interpretation here
- this is how difficult is low-level stereo we will attempt to solve

What Are The Relative Distances? (Why?)

- a combination of lack of texture and occlusion \longrightarrow ambiguous interpretation

Repetition: How Many Scenes Correspond to a Stereopair?

Consider the fence and the fortress worlds ...

- lack of texture is a limiting case of repetition

How Difficult Is Stereo?

- when we do not recognize the scene and cannot use high-level constraints the problem seems difficult (right, less so in the center)
- most stereo matching algorithms do not require scene understanding prior to matching
- the success of a model-free stereo matching algorithm is unlikely:

left image

disparity map

disparity map from WTA

WTA Matching:

- for every left-image pixel find the most similar right-image pixel along the corresponding epipolar line [Marroquin 83]

Why Model-Free Stereo Fails?

- lack of an occlusion model
- lack of a continuity model

$$
\Rightarrow \text { structural ambiguity }
$$

But What Kind of Continuity Model Applies Here？

－continuity alone is not a sufficient model
－occlusion model is more primal
－but occlusion model alone is insufficient，since it does not solve structural ambiguity

A Summary of Our Observations and an Outlook

- simple matching algorithms do not work
- decisions on matches are not independent due to occlusions
occlusion constraint works along epipolars only
- occlusion model alone is insufficient does not resolve the structural ambiguity
- a continuity model can resolve structural ambiguity
but continuity is piecewise due to object boundaries
- in sufficiently complex scenes the only possibility is that stereopsis uses scene interpretation (or another-modality measurement)

Outlook:

1. represent the occlusion constraint:

- epipolar rectification
- disparity
- uniqueness as an occlusion constraint

2. represent piecewise continuity

- ordering as a weak continuity model

3. use a consistent framework

- looking for the most probable solution (MAP)

Epipolar Rectification

Problem: Given fundamental matrix \mathbf{F} or camera matrices $\mathbf{P}_{1}, \mathbf{P}_{2}$, transform images so that epipolar lines become horizontal with the same row coordinate. The result is a standard stereo pair.
for easier correspondence search
Procedure:

1. find a pair of rectification homographies \mathbf{H}_{1} and \mathbf{H}_{2}.
2. warp images using \mathbf{H}_{1} and \mathbf{H}_{2} and modify fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_{2}^{-\top} \mathbf{F H}_{1}^{-1}$ or cameras $\mathbf{P}_{1} \mapsto \mathbf{H}_{1} \mathbf{P}_{1}, \quad \mathbf{P}_{2} \mapsto \mathbf{H}_{2} \mathbf{P}_{2}$.

- there is a 9-parameter family of rectification homographies for binocular rectification, see next

Rectification Example

Four cameras in general position

cam 1

cam 3

cam 2

cam 4

Rectified pairs

pair 2-4

pair 1-4

- Rectification Homographies

Cameras ($\mathbf{P}_{1}, \mathbf{P}_{2}$) are rectified by a homography pair $\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$:

$$
\mathbf{P}_{i}^{*}=\mathbf{H}_{i} \mathbf{P}_{i}=\mathbf{H}_{i} \mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], \quad i=1,2
$$

rectified entities: $\mathbf{F}^{*}, l_{2}^{*}, l_{1}^{*}$, etc:
 corresponding epipolar lines must be:

1. parallel to image rows \Rightarrow epipoles become $e_{1}^{*}=e_{2}^{*}=(1,0,0)$
2. equivalent $l_{2}^{*}=l_{1}^{*} \Rightarrow \underline{l}_{2}^{*} \simeq \underline{l}_{1}^{*} \simeq \underline{\mathbf{e}}_{1}^{*} \times \underline{\mathbf{m}}_{1}=\left[\underline{\mathbf{e}}_{-}^{*}\right]_{\times} \underline{\mathbf{m}}_{1}=\mathbf{F}^{*} \underline{\mathbf{m}}_{1}$ both conditions together give the rectified fundamental matrix

$$
\mathbf{F}^{*} \simeq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

A two-step rectification procedure

1. Find some pair of primitive rectification homographies $\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$
2. Upgrade them to a pair of optimal rectification homographies from the class preserving \mathbf{F}^{*}.

Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with \mathbf{F}^{*} ?

- we know that $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$
- we choose $\mathbf{Q}_{1}^{*}=\mathbf{K}_{1}^{*}, \mathbf{Q}_{2}^{*}=\mathbf{K}_{2}^{*} \mathbf{R}^{*}$; then

$$
\left(\mathbf{Q}_{1}^{*} \mathbf{Q}_{2}^{*-1}\right)^{\top}\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times}=\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}
$$

- we look for $\mathbf{R}^{*}, \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*}$ compatible with

$$
\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}=\lambda \mathbf{F}^{*}, \quad \mathbf{R}^{*} \mathbf{R}^{* \top}=\mathbf{I}, \quad \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*} \text { upper triangular }
$$

- we also want \mathbf{b}^{*} from $\underline{\mathbf{e}}_{1}^{*} \simeq \mathbf{P}_{1}^{*} \underline{\mathbf{C}}_{2}^{*}=\mathbf{K}_{1}^{*} \mathbf{b}^{*}$
b^{*} in cam. 1 frame
- result:

$$
\mathbf{R}^{*}=\mathbf{I}, \quad \mathbf{b}^{*}=\left[\begin{array}{l}
b \tag{29}\\
0 \\
0
\end{array}\right], \quad \mathbf{K}_{1}^{*}=\left[\begin{array}{ccc}
k_{11} & k_{12} & k_{13} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{K}_{2}^{*}=\left[\begin{array}{ccc}
k_{21} & k_{22} & k_{23} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- rectified cameras are in canonical position with respect to each other not rotated, canonical baseline
- rectified calibration matrices can differ in the first row only
- when $\mathbf{K}_{1}^{*}=\mathbf{K}_{2}^{*}$ then the rectified pair is called the standard stereo pair and the homographies standard rectification homographies

cont'd

- rectification is a homography (per image)
\Rightarrow rectified camera centers are equal to the original ones
- standard rectified cameras are in canonical orientation
\Rightarrow rectified image projection planes are coplanar
- standard rectification guarantees equal rectified calibration matrices
\Rightarrow rectified image projection planes are equal
standard rectification homographies reproject onto a common image plane parallel to the baseline

Corollary

- the standard rectified stereo pair has vanishing disparity for 3D points at infinity
- but known \mathbf{F} alone does not give any constraints to obtain standard rectification homographies
- for that we need either of these:

1. projection matrices, or
2. calibrated cameras, or
3. a few points at infinity calibrating $k_{1 i}, k_{2 i}, i=1,2,3$ in (29)

Primitive Rectification

Goal: Given fundamental matrix \mathbf{F}, derive some simple rectification homographies $\mathbf{H}_{1}, \mathbf{H}_{2}$

1. Let the SVD of \mathbf{F} be $\mathbf{U D V}^{\top}=\mathbf{F}$, where $\mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad 1 \geq d^{2}>0$
2. decompose $\mathbf{D}=\mathbf{A}^{\top} \mathbf{F}^{*} \mathbf{B}$, where $\quad\left(\mathbf{F}^{*}\right.$ is given \rightarrow Slide 151)

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & d & 0 \\
1 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & -d & 0
\end{array}\right]
$$

3. then

$$
\mathbf{F}=\mathbf{U D V}^{\top}=\underbrace{\mathbf{U} \mathbf{A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B V} V^{\top}}_{\hat{\mathbf{H}}_{1}}
$$

and the primitive rectification homographies are

$$
\hat{\mathbf{H}}_{2}=\mathbf{A} \mathbf{U}^{\top}, \quad \hat{\mathbf{H}}_{1}=\mathbf{B V}^{\top}
$$

* P1; 1pt: derive some \mathbf{A}, \mathbf{B} from the admissible class
- rectification homographies do exist
- there are other primitive rectification homographies, these suggested are just simple to obtain

Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d=1 \Rightarrow \hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$ are orthogonal

1. determine primitive rectification homographies $\left(\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}\right)$ from the essential matrix
2. choose a suitable common calibration matrix \mathbf{K}, e.g.

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad f=\frac{1}{2}\left(f^{1}+f^{2}\right), \quad u_{0}=\frac{1}{2}\left(u_{0}^{1}+u_{0}^{2}\right), \quad \text { etc. }
$$

3. the final rectification homographies are

$$
\mathbf{H}_{1}=\mathbf{K} \hat{\mathbf{H}}_{1}, \quad \mathbf{H}_{2}=\mathbf{K} \hat{\mathbf{H}}_{2}
$$

- we got a standard camera pair and non-negative disparity

$$
\begin{aligned}
\mathbf{P}_{i}^{+} \stackrel{\text { def }}{=} \mathbf{K}_{i}^{-1} \mathbf{P}_{i}=\mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], & i=1,2
\end{aligned} \quad \text { note we started from } \mathbf{E}, \text { not } \mathbf{F} \text { }
$$

- one can prove that $\mathbf{B V}{ }^{\top} \mathbf{R}_{1}=\mathbf{A} \mathbf{U}^{\top} \mathbf{R}_{2}$ with the help of (11)
- points at infinity project to $\mathbf{K R}^{*}$ in both images \Rightarrow they have zero disparity

-The Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies \mathbf{A}_{1} and \mathbf{A}_{2} are rectification-preserving if the images stay rectified, i.e. if $\mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1} \simeq \mathbf{F}^{*}$, which gives

$$
\mathbf{A}_{1}=\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right]
$$

where $s \neq 0, u_{0}, l_{1}, l_{2} \neq 0, l_{3}, r_{1}, r_{2} \neq 0, r_{3}, q$ are 9 free parameters.

general	transformation		canonica	type
l_{1}, r_{1}	horizontal scales		$l_{1}=r_{1}$	algebraic
l_{2}, r_{2}	horizontal skews	$\square \bigcirc$	$l_{2}=r_{2}$	algebraic
l_{3}, r_{3}	horizontal shifts		$l_{3}=r_{3}$	algebraic
q	common special projective			geometric
s_{v}	common vertical scale			geometric
t_{v}	common vertical shift			algebraic

- q is rotation about the baseline
proof: find a rotation \mathbf{G} that brings \mathbf{K} to upper triangular form via $R Q$ decomposition: $\mathbf{A}_{1} \mathbf{K}_{1}^{*}=\hat{\mathbf{K}}_{1} \mathbf{G}$ and $\mathbf{A}_{2} \mathbf{K}_{2}^{*}=\hat{\mathbf{K}}_{2} \mathbf{G}$
- s_{v} changes the focal length

The Rectification Group

Corollary for Proposition 1 Let $\overline{\mathbf{H}}_{1}$ and $\overline{\mathbf{H}}_{2}$ be (primitive or other) rectification homographies. Then $\mathbf{H}_{1}=\mathbf{A}_{1} \overline{\mathbf{H}}_{1}, \quad \mathbf{H}_{2}=\mathbf{A}_{2} \overline{\mathbf{H}}_{2}$ are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ form a group with group operation $\left(\mathbf{A}_{1}^{\prime}, \mathbf{A}_{2}^{\prime}\right) \circ\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\left(\mathbf{A}_{1}^{\prime} \mathbf{A}_{1}, \mathbf{A}_{2}^{\prime} \mathbf{A}_{2}\right)$.
Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_{2}^{\top} \mathbf{F}^{*} \mathbf{A}_{1} \simeq \mathbf{F}^{*} \Leftrightarrow \mathbf{F}^{*} \simeq \mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1}$

Optimal and Non-linear Rectification

Optimal choice for the free parameters

- by minimization of residual image distortion, eg. [Gluckman \& Nayar 2001]

$$
\mathbf{A}_{1}^{*}=\arg \min _{\mathbf{A}_{1}} \iint_{\Omega}\left(\operatorname{det} J\left(\mathbf{A}_{1} \hat{\mathbf{H}}_{1} \underline{\mathbf{x}}\right)-1\right)^{2} d \mathbf{x}
$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification suitable for forward motion [Pollefeys et al. 1999], [Geyer \& Daniilidis 2003]

forward egomotion

rectified images, Pollefeys' method

－Binocular Disparity in Standard Stereo Pair

－Assumptions：single image line，standard camera pair

$$
\begin{aligned}
b & =z \cot \alpha_{1}-z \cot \alpha_{2} \\
u_{1} & =f \cot \alpha_{1} \\
b & =\frac{b}{2}+x-z \cot \alpha_{2} \\
X=(x, z) & \text { from disparity } d=u_{2}-u_{2}:
\end{aligned}
$$

$$
z=\frac{b f}{d}, \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2}, \quad y=\frac{b v}{d}
$$

$$
f, d, u, v \text { in pixels, } b, x, y, z \text { in meters }
$$

Observations

－constant disparity surface is a frontoparallel plane
－distant points have small disparity
－relative error in z is large for small disparity

$$
\frac{1}{z} \frac{d z}{d d}=-\frac{1}{d}
$$

－increasing baseline increases disparity and reduces the error

Understanding Basic Occlusion Types

half occlusion

mutual occlusion

- surface point at the intersection of rays l and r_{1} occludes a world point at the intersection $\left(l, r_{3}\right)$ and implies the world point $\left(l, r_{2}\right)$ is transparent, therefore

$$
\left(l, r_{3}\right) \text { and }\left(l, r_{2}\right) \text { are excluded by }\left(l, r_{1}\right)
$$

- in half-occlusion, every world point such as X_{1} or X_{2} is excluded by a binocularly visible surface point
\Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
\Rightarrow decisions in the zone are independent on the rest

Matching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: correspondences
- numerical values associated with nodes: descriptor similarities

Image Point Descriptors And Their Similarity

Descriptors: Tag image points by their (viewpoint-invariant) physical properties:

- texture window
[Moravec 77]
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
[Wolff \& Angelopoulou 93-94]
[Ikeuchi 87]
- polarization signature
- ...
- similar points are more likely to match
- we will compute image similarity for all 'match candidates' and get the matching table

video

Constructing A Suitable Image Similarity

- let $p_{i}=(l, r)$ and $\mathbf{L}(l), \mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows
in matching table T :

- a natural descriptor similarity is $\operatorname{sim}(l, r)=\frac{\|\mathbf{L}(l)-\mathbf{R}(r)\|^{2}}{\sigma_{I}^{2}(l, r)}$
- σ_{I}^{2} - the difference scale; a suitable (plug-in) estimate is $\frac{1}{2}\left[s^{2}(\mathbf{L}(l))+s^{2}(\mathbf{R}(r))\right]$, giving

$$
\begin{equation*}
\operatorname{sim}(l, r)=1-\underbrace{\frac{2 s(\mathbf{L}(l), \mathbf{R}(r))}{s^{2}(\mathbf{L}(l))+s^{2}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))} \quad s^{2}(\cdot) \text { is sample (co-)variance } \tag{30}
\end{equation*}
$$

- $\rho-\mathrm{MNCC}$ - Moravec's Normalized Cross-Correlation
[Moravec 1977]

$$
\rho^{2} \in[0,1], \quad \operatorname{sign} \rho \sim \text { 'phase' }
$$

cont'd

- we choose some probability distribution on $[0,1]$, e.g. Beta distribution
$p_{1}(\operatorname{sim}(l, r))=\frac{1}{B(\alpha, \beta)} \rho^{2(\alpha-1)}\left(1-\rho^{2}\right)^{\beta-1}$
- note that uniform distribution is obtained for $\alpha=\beta=1$

- the mode is at $\sqrt{\frac{\alpha-1}{\alpha+\beta-2}} \approx 0.9733$ for $\alpha=10, \beta=1.5$
- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with

$$
\begin{equation*}
V_{1}(\operatorname{sim}(l, r))=-\log p_{1}(\operatorname{sim}(l, r)) \tag{31}
\end{equation*}
$$

How A Scene Looks in The Filled-In Similarity Table

left image
11×11 window

a good tradeoff

3×3 window

undiscrimiable

- MNCC ρ used $(\alpha=1.5, \beta=1)$
- high-correlation structures correspond to scene objects constant disparity
- a diagonal in correlation table
- zero disparity is the main diagonal
depth discontinuity
- horizontal or vertical jump in correlation table
large image window
- better correlation
- worse occlusion localization see next
repeated texture
- horizontal and vertical block repetition

Note: Errors at Occlusion Boundaries for Large Windows

NCC, Disparity Error

- this used really large window of $25 \times 25 \mathrm{px}$
- errors depend on the relative contrast across the occlusion boundary
- the direction of 'overlow' depends on the combination of texture contrast and edge contrast
- solutions:

1. small windows (5×5 typically suffices)
2. eg. 'guided filtering' methods for computing image similarity [Hosni 2011]

- Marroquin's Winner Take All (WTA) Matching Algorithm

1. per left-image pixel: find the most similar right-image pixel
$\operatorname{SAD}(l, r)=\|\mathbf{L}(l)-\mathbf{R}(r)\|_{1} \quad L_{1}$ norm instead of the L_{2} norm in (30); unnormalized
2. represent the dissimilarity table diagonals in a compact form

$$
\begin{aligned}
& d=0--\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-- \\
& d=1-----\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-- \\
& d=2--------\mathrm{O}-\mathrm{O}-\mathrm{O}--
\end{aligned}
$$

3. use the 'image sliding aggregation algorithm'

4. threshold results by maximal allowed dissimilarity

The Matlab Code for WTA

```
function dmap = marroquin(iml,imr,disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
    thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood)
% the size of each local patch; it is N=(2r+1)^2 except for boundary pixels
N = boxing(ones(size(iml)), winsize);
% computing dissimilarity per pixel (unscaled SAD)
for d = 0:disparityRange % cycle over all disparities
    slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity
    V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
end
% collect winners, threshold, and output disparity map
[cmap,dmap] = min(V,[],3);
dmap(cmap > thr) = NaN; % mask-out high dissimilarity pixels
end
function c = boxing(im, wsz)
    % if the mex is not found, run this slow version:
    c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end
```


WTA：Some Results

－results are bad
－false matches in textureless image regions and on repetitive structures（book shelf）
－a more restrictive threshold（thr＝10）does not work as expected
－we searched the true disparity range，results get worse if the range is set wider
－chief failure reasons：
－unnormalized image dissimilarity does not work well
－no occlusion model

Negative Log-Likelihood of Observed Images

- given matching M what is the likelihood of observed data D ?
- we need the ability 'not to match'
- matches are pairs $p_{i}=\left(l_{i}, r_{i}\right), \quad i=1, \ldots, n$
- we will mask-out some matches by a binary label $\lambda \in\{e, m\}$
excluded, matched
- labeled matching is a set

$$
M=\left\{\left(p_{1}, \lambda\left(p_{1}\right)\right),\left(p_{2}, \lambda\left(p_{2}\right)\right), \ldots,\left(p_{n}, \lambda\left(p_{n}\right)\right)\right\}
$$

p_{i} are matching table pairs; there are no more than n in the table T

The negative log-likelihood is then the likelihood of data D given labeled matching M

$$
V(D \mid M)=\sum_{p_{i} \in M} V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)\right)
$$

Our choice:

$$
\begin{aligned}
V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{e}\right) & =V_{\mathrm{e}} \\
V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{m}\right) & =V_{1}(D(l, r))
\end{aligned}
$$

penalty for unexplained data, $V_{\mathrm{e}} \geq 0$ probability of match $p_{i}=(l, r)$ from (31)

- the $V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\right.$ e) could also be a non-uniform distribution but the extra effort does not pay off

Maximum Likelihood (ML) Matching

Uniqueness constraint: Each point in the left image matches at most once and vice versa.

A node set of T that follows the uniqueness constraint is called matching in graph theory

A set of pairs $M=\left\{p_{i}\right\}_{i=1}^{n}, p_{i} \in T$ is a matching iff

$$
\forall p_{i}, p_{j} \in M, i \neq j: p_{j} \notin X\left(p_{i}\right)
$$

The $X(p)$ is called the X -zone of p and it defines dependencies

- ML matching will observe the uniqueness constraint only
- epipolar lines are independent wrt uniqueness constraint
- we can solve the problem per image lines i independently:
$\circledast \mathrm{H} 4 ; 2$ pt: How many are there: (1) binary partitionings of T, (2) maximal matchings in T; prove the results.

$$
M^{*}=\underset{M \in \mathcal{M}}{\arg \min } \sum_{p \in M} V(D(p) \mid \lambda(p))=\underset{M \in \mathcal{M}}{\arg \min }(\underbrace{|M|_{\mathrm{e}} \cdot V_{\mathrm{e}}}_{\text {unexplained pixels }}+\underbrace{\sum_{p \in M: \lambda(p)=\mathrm{m}} V(D(p) \mid \lambda(p)=\mathrm{m})}_{\text {matching likelihood proper }})
$$

\mathcal{M} - set of all perfect labeled matchings, $|M|_{\mathrm{e}}$ - number of pairs with $\lambda=\mathrm{e}$ in $M,|M|_{\mathrm{e}} \leq n$ perfect $=$ every table row (column) contains exactly 1 match

- the total number of individual terms in the sum is n (which is fixed)

-'Programming' The ML Matching Algorithm

- we restrict ourselves to a single (rectified) image line and reduce the problem to min-cost perfect matching
- extend every matching table pair $p \in T, p=(j, k)$ to 4 combinations $\left(\left(j, s_{j}\right),\left(k, s_{k}\right)\right)$, $s_{j} \in\{0,1\}$ and $s_{k} \in\{0,1\}$ selects/rejects pixels for matching unlike λ selecting matches
- binary label $m_{j k}=1$ then means that $\left(j, s_{j}\right)$ matches $\left(k, s_{k}\right)$
$(k, 0)$
$(j, 1)$

$\bigcirc V_{j k}=V\left(D(j, k) \mid \lambda_{j k}=\mathrm{m}\right)$
$\bigcirc V_{j k}=0$
$V_{j k}=\frac{1}{2} V_{\mathrm{e}}$

$$
+V_{j k}=\infty
$$

- each $(j, 1)$ either matches some $(k, 1)$ or it 'matches' $(j, 0)$
- each $(k, 1)$ either matches some $(j, 1)$ or $(k, 0)$
- if M is maximal in the yellow quadrant then there will be n auxiliary 'matches' in the gray quadrant
- otherwise every empty line in the yellow quadrant induces an empty column in the quadrant, the cost is $2 \cdot \frac{1}{2} V_{\mathrm{e}}=V_{\mathrm{e}}$
- our problem becomes minimum-cost perfect matching in an $(m+n) \times(m+n)$ table

$$
M^{+}=\arg \min _{M} \sum_{j, k} V_{j k} \cdot m_{j k}, \quad \sum_{k} m_{j k}=1 \text { for every } j, \quad \sum_{j} m_{j k}=1 \text { for every } k
$$

- we collect our matches M^{*} in the yellow quadrant

Some Results for the ML Matching

- unlike the WTA we can efficiently control the density/accuracy tradeoff
- middle row: V_{e} set to error rate of 3% (and 61% density is achieved) holes are black
- bottom row: V_{e} set to density of 76% (and 4.3% error rate is achieved)

Some Notes on ML Matching

- an algorithm for maximum weighted bipartite matching can be used as well, with $V \mapsto-V$
- maximum weighted bipartite matching $=$ maximum weighted assignment problem
by eg. Hungarian Algorithm
Idea?: This looks simpler: Run matching with $V_{\mathrm{e}}=0$ and then threshold the result to remove bad matches.

Ex: $V_{\mathrm{e}}=8$

thresholding			our ML matching		
8	3	9	8	3	9
10	6	9	10	6	9
7	1	8	7	1	8
$V=9+2 \cdot 8=25$			$=9$		=

- our matching gives a better cost, also greater cardinality (density)
- the idea was not good!

thresholding

our ML

A Stronger Model Needed

- notice many small isolated errors in the ML matching
- we need a continuity model
- does human stereopsis teach us something?

Potential models for M

1. Monotonicity (ie. ordering preserved):

$$
\begin{aligned}
& \text { For all }(i, j) \in M,(k, l) \in M, \quad k>i \Rightarrow l>j \\
& \text { Notation: }(i, j) \in M \text { or } j=M(i) \text { - left-image pixel } i \text { matches right-image pixel } j \text {. }
\end{aligned}
$$

2. Coherence [Prazdny 85]
"the world is made of objects each occupying a well defined 3D volume"

non-monotonic incoherent

non-monotonic coherent

monotonic coherent

model 'strength'

-An Auxiliary Construct: Cyclopean Camera

Cyclopean coordinate u

$$
\text { new: } u=f \frac{x}{z}, \quad \text { known: } d=f \frac{b}{z}, \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2} \Rightarrow u=\frac{u_{1}+u_{2}}{2}
$$

Disparity gradient
[Pollard, Mayhew, Frisby 1985]

$$
\begin{aligned}
D G & =\frac{\left|d-d^{\prime}\right|}{\left|u-u^{\prime}\right|}=\frac{\left|b f\left(\frac{1}{z}-\frac{1}{z^{\prime}}\right)\right|}{\left|f\left(\frac{x}{z}-\frac{x^{\prime}}{z^{\prime}}\right)\right|}= \\
& =b \frac{\left|z^{\prime}-z\right|}{\left|x z^{\prime}-x^{\prime} z\right|}
\end{aligned}
$$

- human stereovision fails to perceive a continuous surface when disparity gradient exceeds a limit

-Forbidden Zone and The Ordering Constraint

Forbidden zone $F(X): \quad D G>k \quad$ with boundary $b\left(z^{\prime}-z\right)= \pm k\left(x z^{\prime}-x^{\prime} z\right)$

- boundary: a pair of lines in the $x-z$ plane
a degenerate conic
- point $x=x^{\prime}, z=z^{\prime}$ lies on the boundary
- coincides with optical rays for $k=2$
- small k means wide F

- disparity gradient limit is exceeded when $X^{\prime} \in F(X)$
- symmetry: $X^{\prime} \in F(X) \Leftrightarrow X \in F\left(X^{\prime}\right)$
- Obs: X^{\prime} and X swap their order in the other image when $X^{\prime} \in F(X) \quad k=2$
- real scenes often preserve ordering
- thin and close objects violate ordering

Ordering and Critical Distance κ

- object (thick):
- black - binocularly visible
- yellow - half-occluded
- red - ordering violated wrt foreground
- solid red zone of depth κ :
- spatial points visible in neither camera
- bounded by the foreground object

Ordering is violated iff both X_{i}, X_{j} s.t. $X_{i} \in F\left(X_{j}\right)$ are visible in both cameras.
eg. X_{2}, X_{4}

- ordering is preserved in scenes where critical distances κ are not exceeded, ie. when 'the red background hides in the solid red zone'

Thinner objects and/or wider baseline require flatter scenes to preserve ordering.

- The X-zone and the F-zone in Matching Table T

- these are necessary and sufficient conditions for uniqueness and monotonicity

$p_{j} \notin X\left(p_{i}\right), \quad p_{j} \notin F\left(p_{i}\right)$
- Uniqueness Constraint:

A set of pairs $M=\left\{p_{i}\right\}_{i=1}^{N}, p_{i} \in T$ is a matching iff

$$
\forall p_{i}, p_{j} \in M, i \neq j: p_{j} \notin X\left(p_{i}\right) .
$$

- Ordering Constraint:

Matching M is monotonic iff

$$
\forall p_{i}, p_{j} \in M: p_{j} \notin F\left(p_{i}\right) .
$$

- ordering constraint: matched points form a monotonic set in both images
- ordering is a powerful constraint: monotonic matchings $O\left(4^{N}\right) \ll O(N$!) all matchings in $N \times N$ table
$\circledast 2$: how many are there maximal monotonic matchings?
- uniqueness constraint is a basic occlusion model
- ordering constraint is a weak continuity model
and partly also an occlusion model

- Understanding Matching Table

- this is essentially the picture from Slide 178

Bayesian Decision Task for Matching

Idea: $L(d, M)$ - decision cost (loss) d - our decision (matching) $\quad M$ - true correspondences
Choice: $L(d, M):\left\{\begin{array}{ll}\text { if } d=M & \text { then } L(d, M)=0 \\ \text { if } d \neq M & \text { then } L(d, M)=1\end{array} \quad\right.$ i.e. $L(d, M)=[d \neq M]$
Bayesian Loss

$$
L(d \mid D)=\sum_{M \in \mathcal{M}} p(M \mid D) L(d, M)
$$

$$
\mathcal{M} \text { - the set of all matchings } \quad D=\left\{I_{L}, I_{R}\right\} \text { - data }
$$

Solution for the best decision d

$$
\begin{aligned}
d^{*} & =\arg \min _{d} \sum_{M \in \mathcal{M}} p(M \mid D)(1-[d=M])=\arg \min _{d}\left(1-\sum_{M \in \mathcal{M}} p(M \mid D)[d=M]\right)= \\
& =\arg \max _{d} \sum_{M \in \mathcal{M}} p(M \mid D)[d=M]=\arg \max _{M} p(M \mid D)= \\
& =\arg \min _{M}(-\log p(M \mid D)) \stackrel{\text { def }}{=} \arg \min _{M} V(M \mid D)=\arg \min _{M \in \mathcal{M}}(\underbrace{V(D \mid M)}_{\text {likelihood }}+\underbrace{V(M)}_{\text {prior }})
\end{aligned}
$$

- this is Maximum Aposteriori Probability (MAP) estimate
- other loss functions result in different solutions
- our choice of $L(d, M)$ looks oversimple but it results in algorithmically tractable problems

Constructing The Prior Model Term $V(M)$

- the prior $V(M)$ should capture

1. uniqueness

$$
M^{*}=\arg \min _{M \in \mathcal{M}}(V(D \mid M)+V(M))
$$

2. ordering
3. coherence

- we need a suitable representation to encode $V(M)$
- Every $p=(l, r)$ of the $|I| \times|J|$ matching table T (except for the last row and column) receives two succesors $(l+1, r)$ and $(l, r+1)$

- this gives an acyclic directed graph \mathcal{G}
optimal paths in acyclic graphs are an easier problem
- the set of s-t paths starting in s and ending in t will represent the set of matchings
- all such s-t paths have equal length $n=|I|+|J|-1$
all prospective matchings will have the same number of terms in $V(D \mid M)$ and in $V(M)$

Endowing s-t Paths with Useful Properties

- introduce node labels $\Lambda=\left\{\mathrm{m}, \mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right\}$
matched, left-excluded, right-excluded
- s-t path neighbors are allowed only some label combinations:

m	e_{L}	e_{L}	e_{L}	m	e_{L}	e_{R}	e_{L}
				\bigcirc	9	9	9
e_{R}	m	e_{R}	eL	\bigcirc	\downarrow	σ	
				e_{R}	m	e_{R}	e_{R}

Observations

- no two neighbors have label m
- in each labeled s-t path there is at most one transition:

1. $\mathrm{m} \rightarrow \mathrm{e}_{\mathrm{L}}$ or $\mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{m}$ per matching table row,
2. $\mathrm{m} \rightarrow \mathrm{e}_{\mathrm{R}}$ or $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{m}$ per matching table column

- pairs labeled m on every s-t path satisfy uniqueness and ordering constraints
- transitions $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{R}}$ or $\mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{L}}$ along an s-t path allow skipping a contiguous segment in either or in both images
this models half occlusion and mutual occlusion
- disparity change is the number of edges

- a given monotonic matching can be traversed by one or more s-t paths

Labeled s-t paths

$$
P=\left(\left(p_{1}, \lambda_{1}\right),\left(p_{2}, \lambda_{2}\right), \ldots,\left(p_{n}, \lambda_{n}\right)\right)
$$

The Structure of The Prior Model $V(P)$ Gives a MC Recognition Problem

ideas:

- we choose energy of path P dependent on its labeling only
- we choose additive penalty per transition $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{R}}$, and $\mathrm{e}_{\mathrm{L}} \rightarrow \mathrm{e}_{\mathrm{R}}, \mathrm{e}_{\mathrm{R}} \rightarrow \mathrm{e}_{\mathrm{L}}$
- no penalty for $m \rightarrow e_{L}, m \rightarrow e_{R}$

Employing Markovianity

$$
\begin{aligned}
V(P) & =V\left(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}\right)=V\left(\lambda_{n} \mid \lambda_{n-1}, \ldots, \lambda_{1}\right)+V\left(\lambda_{n-1}, \ldots, \lambda_{1}\right)= \\
& =V\left(\lambda_{n} \mid \lambda_{n-1}\right)+V\left(\lambda_{n-1}, \ldots, \lambda_{1}\right)=V\left(\lambda_{1}\right)+\sum_{i=2}^{n} V\left(\lambda_{i} \mid \lambda_{i-1}\right)
\end{aligned}
$$

The matching problem is then a decision over labeled s-t paths $P \in \mathcal{P}$:

$$
\begin{equation*}
P^{*}=\arg \min _{P \in \mathcal{P}}\left\{V_{p_{1}}\left(D \mid \lambda_{1}\right)+V\left(\lambda_{1}\right)+\sum_{i=2}^{n}\left[V_{p_{i}}\left(D \mid \lambda_{i}\right)+V\left(\lambda_{i} \mid \lambda_{i-1}\right)\right]\right\} \tag{32}
\end{equation*}
$$

- the data likelihood term $V_{p_{i}}\left(D \mid \lambda_{i}\right)$ is the same as in (31) on Slide 164
- note that one can add/subtract a fixed term from any of the functions V_{p}, V in (32)

A Choice of $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$

- A natural requirement: symmetry of probability $p\left(\lambda_{i}, \lambda_{i-1}\right)=e^{-V\left(\lambda_{i}, \lambda_{i-1}\right)}$

$p\left(\lambda_{i}, \lambda_{i-1}\right)$		λ_{i}		
		m	e_{L}	e_{R}
λ_{i-1}	m	0	$p(\mathrm{~m}, \mathrm{e})$	$p(\mathrm{~m}, \mathrm{e})$
	e_{L}	$p(\mathrm{~m}, \mathrm{e})$	$p(\mathrm{e}, \mathrm{e})$	$p\left(\mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right)$
	e_{R}	$p(\mathrm{~m}, \mathrm{e})$	$p\left(\mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right)$	$p(\mathrm{e}, \mathrm{e})$

3 DOF, 1 constraint $\Rightarrow 2$ parameters

$$
\begin{array}{lr}
\alpha_{1}=\frac{p\left(\mathrm{e}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}\right)}{p(\mathrm{e}, \mathrm{e})} & 0 \leq \alpha_{1} \leq 1 \\
\alpha_{2}=\frac{p(\mathrm{~m}, \mathrm{e})}{p(\mathrm{e}, \mathrm{e})} & 0<\alpha_{2} \leq 1+\alpha_{1}
\end{array}
$$

- Result for $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$ (after subtracting common terms):

$V\left(\lambda_{i} \mid \lambda_{i-1}\right)$		λ_{i}		
		m	e_{L}	e_{R}
λ_{i-1}	m	∞	0	0
	e_{L}	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{1}}$
	e_{R}	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{1}}$	$\ln \frac{1+\alpha_{1}+\alpha_{2}}{2}$

by marginalization:

$$
\begin{aligned}
V(\mathrm{~m}) & =\ln \frac{1+\alpha_{1}+\alpha_{2}}{2 \alpha_{2}} \\
V\left(\mathrm{e}_{\mathrm{L}}\right) & =V\left(\mathrm{e}_{\mathrm{R}}\right)=0
\end{aligned}
$$

parameters

- α_{1} - likelihood of mutual occlusion ($\alpha_{1}=0$ forbids mutual occlusion)
- α_{2} - likelihood of irregularity ($\alpha_{2} \rightarrow 0$ helps suppress small objects and holes)
- α, β - similarity model parameters (see $V_{1}(D(l, r))$ on Slide 164)
- V_{e} - penalty for disregarded data (see $V\left(D\left(p_{i}\right) \mid \lambda\left(p_{i}\right)=\mathrm{e}\right.$) on Slide 170)

'Programming' the Matching Algorithm: 3LDP

- given \mathcal{G}, construct directed graph \mathcal{G}^{+}
- triple of vertices per node of s-t path representing three hypotheses $\lambda(p)$ for $\lambda \in \Lambda$
- arcs have costs $V\left(\lambda_{i} \mid \lambda_{i-1}\right)$, nodes have costs $V\left(D \mid \lambda_{i}\right)$
- orientation of \mathcal{G}^{+}is inherited from the orientation of s-t paths
- we converted the shortest labeled-path problem to ordinary shortest path problem

neighborhood of p; strong blue edges are of zero penalty

cont'd: Dynamic Programming on \mathcal{G}^{+}

- \mathcal{G}^{+}is a topologically ordered directed graph
- we can use dynamic programming on \mathcal{G}^{+}

$$
\begin{aligned}
V_{s: q}^{*}\left(\lambda_{q}\right)=\min _{z \in\left\{p_{1}, p_{2}\right\}, \lambda_{z} \in \Lambda} & \left\{V_{s: z}^{*}\left(\lambda_{z}\right)+V_{z}\left(D \mid \lambda_{z}\right)+V\left(\lambda_{q} \mid \lambda_{z}\right)\right\} \\
& V_{s: q}^{*}\left(\lambda_{q}\right)-\text { cost of min-path from } s \text { to label } \lambda_{q} \text { at node } q
\end{aligned}
$$

- complexity is $O(|I| \cdot|J|)$, ie. stereo matching on $N \times N$ images needs $O\left(N^{3}\right)$ time
- speedup by limiting the range in which the disparities $d=l-r$ are allowed to vary

Implementation of 3LDP in a few lines of code. . .

```
#define clamp(x, mi, ma) ((x) < (mi) ? (mi) : ((x) > (ma) ? (ma) : (x)))
#define MAXi(tab,j) clamp((j)+(tab).drange[1], (tab).beg[0], (tab).end[0])
#define MINi(tab,j) clamp((j)+(tab).drange[0], (tab).beg[0], (tab).end[0])
#define ARG_MIN2(Ca, La, C0, LO, C1, L1) if ((C0) < (C1)) { Ca=C0; La = L0; } else {Ca = C1; La = L1; }
#define ARG_MIN3(Ca, La, C0, L0, C1, L1, C2, L2) \
    if ( (C0) <= MIN(C1, C2) ) { Ca = C0; La = LO; } else if ( (C1) < MIN(CO, C2) ) { Ca = C1; La = L1; } else { Ca = C2; La = L2; }
int i = tab.beg[0]; int j = tab.beg[1];
C_m[j][i-1] = C_m[j-1][i] = MAXDOUBLE;
C_oL[j][i-1] = C_oR[j-1][i] = 0.0;
C_oL[j-1][i] = C_oR[j][i-1] = -penalty[0];
for(j = tab.beg[1]; j <= tab.end[1]; j++)
    for(i = MINi(tab,j); i <= MAXi(tab,j); i++) {
        ARG_MIN2(C_m[j][i], P_m[j][i],
                    C_oR[j-1][i] + penalty[2], lbl_oR,
                    C_oL[j][i-1] + penalty[2], lbl_oL);
        C_m[j][i] += 1.0 - tab.MNCC[j][i];
        ARG_MIN3(C_oL[j][i], P_oL[j][i], C_m[j-1][i], lbl_m,
            C_oL[j-1][i] + penalty[0], lbl_oL,
            C_oR[j-1][i] + penalty[1], lbl_oR);
        C_oL[j][i] += penalty[3];
        ARG_MIN3(C_oR[j][i], P_oR[j][i], C_m[j][i-1], lbl_m,
                C_oR[j][i-1] + penalty[0], lbl_oR,
                    C_oL[j][i-1] + penalty[1], lbl_oL);
        C_oR[j][i] += penalty[3];
    }
}
```

```
void DP3LForward(MatchingTableT tab) {
```

```
void DP3LForward(MatchingTableT tab) {
```


Some Results: AppleTree

left image

3LDP (slide 186)

right image

naïve DP [Cox et al. 1992]

ML (slide 172)

stable segmented 3LDP (see [SP])

- 3LDP parameters $\alpha_{i}, V_{\mathrm{e}}$ learned on Middlebury stereo data

Some Results：Larch

left image

3LDP（slide 186）

right image

naïve $D P$

ML（slide 172）

stable segmented 3LDP
－naïve DP does not model mutual occlusion
－but even 3LDP has errors in mutually occluded region
－stable segmented 3LDP has few errors in mutually occluded region since it uses a weak form of＇image understanding＇

Algorithm Comparison

Winner-Take-All (WTA)

- the ur-algorithm [Marroquin 83] no model
- dense disparity map
- $O\left(N^{3}\right)$ algorithm, simple but it rarely works

Maximum Likelihood (ML)

- semi-dense disparity map
- many small isolated errors
- models basic occlusion
- $O\left(N^{3} \log (N V)\right)$ algorithm max-flow by cost scaling MAP with Min-Cost Labeled Path (3LDP)
- semi-dense disparity map
- models occlusion in flat, piecewise continuos scenes
- has 'illusions' if ordering does not hold
- $O\left(N^{3}\right)$ algorithm

Stable Segmented 3LDP

- better (fewer errors at any given density)
- $O\left(N^{3} \log N\right)$ algorithm
- requires image segmentation itself a difficult task

ROC curves and their average error rate bounds

- ROC-like curve captures the density/accuracy tradeoff
- GCS is the one used in the exercises
- more algorithms at http://vision.middlebury.edu/ stereo/ (good luck!)

Part VIII

Shape from Reflectance

31 Reflectance Models (Microscopic Phenomena)
32 Photometric Stereo
33 Image Events Linked to Shape (Macroscopic Phenomena) mostly covered by

Forsyth, David A. and Ponce, Jean. Computer Vision: A Modern Approach. Prentice Hall 2003. Chap. 5
additional referencesR. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439-451, July 1988.
P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. In Proc Conf Computer Vision and Pattern Recognition, pp. 1060-1066, 1997.

Basic Surface Reflectance Mechanisms

- reflection on (rough) optical boundary
- masking and shadowing
- interreflection
- refraction into the body
- subsurface scattering
- refraction into the air

-Parametric Reflectance Models

Image intensity (measurement) at pixel m
given by surface reflectance function R

$$
J(m)=\eta f_{i, r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \cdot \underbrace{\frac{\Phi_{e}}{4 \pi\|\mathbf{L}-\mathbf{x}\|^{2}}}_{\sigma} \mathbf{n}^{\top} \mathbf{l}=R(\mathbf{n}), \quad \mathbf{l}=\frac{\mathbf{L}-\mathbf{x}}{\|\mathbf{L}-\mathbf{x}\|}
$$

η - sensor sensitivity
for simplicity, we select $\eta=2 \pi$
$f_{i, r}()$ - bidirectional reflectance distribution function (BRDF) $\left[f_{i, r}()\right]=\mathrm{sr}^{-1}$ how much of irradiance in Wm^{-2} is redistributed per solid angle element
L - point light source position
Φ_{e} - radiant power of the light source, $\left[\Phi_{e}\right]=\mathrm{W}$
n - surface normal
σ - irradiance of a surfel orthogonal to incident light direction

Isotropic (Lambertian) reflection
[Lambert 1760] no optical boundary

$$
\begin{gathered}
f_{i, r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)=\frac{\rho}{2 \pi}, \quad \rho-\text { albedo } \\
J(m)=\sigma \rho \cos \theta_{i}=\sigma \rho \mathbf{n}^{\top} \mathbf{l}
\end{gathered}
$$

Photometric Stereo

Lambertian model (light $j \in\{1,2,3\}$, pixel $i \in\{1, \ldots, n\}$)

$$
J_{j i}=\left(\sigma_{j} \mathbf{l}_{j}\right)^{\top}\left(\rho_{i} \mathbf{n}_{i}\right)=\mathbf{s}_{j}^{\top} \mathbf{b}_{i}
$$

$\mathbf{b}_{i}-$ scaled normals, \mathbf{s}_{j} - scaled lights
3 independent scaled lights and n scaled normals, one per pixel (in n pixels); can be stacked in matrices:

$$
\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22} \\
J_{31} & J_{32}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{s}_{1}^{\top} \mathbf{b}_{1} & \mathbf{s}_{1}^{\top} \mathbf{b}_{2} \\
\mathbf{s}_{2}^{\top} \mathbf{b}_{1} & \mathbf{s}_{2}^{\top} \mathbf{b}_{2} \\
\mathbf{s}_{3}^{\top} \mathbf{b}_{1} & \mathbf{s}_{3}^{\top} \mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{s}_{1}^{\top} \\
\mathbf{s}_{2}^{\top} \\
\mathbf{s}_{3}^{\top}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]
$$

$$
n=2 \text { pixels, } 3 \text { lights }
$$

pixel indexing i :

1	2	3	4
5	6	7	8
9	10	11	12

in general, stacked per columns:

$$
\mathbf{S}=\left[\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right] \in \mathbb{R}^{3,3} \quad \mathbf{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{3, n}
$$

Solution to Photometric Stereo

$$
\begin{gathered}
\mathbf{J}=\mathbf{S}^{\top} \mathbf{B} \quad \Rightarrow \quad \mathbf{B}=\mathbf{S}^{-\top} \mathbf{J} \\
\rho_{i}=\left\|\mathbf{b}_{i}\right\| \quad \text { albedo map }, \quad \mathbf{n}_{i}=\frac{1}{\rho_{i}} \mathbf{b}_{i} \quad \\
\underline{\text { needle map }} \\
\hline
\end{gathered}
$$

Photometric Stereo: Plaster Cast Example

input images (known lights)
We have: 1. shape (surface normals), 2. intrinsic texture (albedo)
The shape can be represented as unit normal vectors \mathbf{n} or as a gradient field (p, q) :

$$
\begin{gathered}
\mathbf{n}(u, v)=\left(n_{1}(u, v), n_{2}(u, v), n_{3}(u, v)\right) \\
\frac{\partial z(u, v)}{\partial u} \stackrel{\text { def }}{=} z_{u}(u, v)=p(u, v)= \pm \frac{n_{1}(u, v)}{2 n_{3}(u, v)^{2}-1} \\
\frac{\partial z(u, v)}{\partial v} \stackrel{\text { def }}{=} z_{v}(u, v)=q(u, v)= \pm \frac{n_{2}(u, v)}{2 n_{3}(u, v)^{2}-1}
\end{gathered}
$$

- The Integration Algorithm of Frankot and Chellappa (FC)

Task: Given gradient fields $p(u, v), q(u, v)$, find height function $z(u, v)$ such that z_{u} is close to p and z_{v} is close to q in the sense of a functional norm.

$$
z^{*}=\arg \min _{z} Q(z), \quad Q(z)=\iint\left|z_{u}(u, v)-p(u, v)\right|^{2}+\left|z_{v}(u, v)-q(u, v)\right|^{2} d u d v
$$

In the Fourier domain this can be written as $\quad \mathcal{F}(z ; \boldsymbol{\omega})=\frac{1}{2 \pi} \iint z(u, v) e^{-j\left(u \omega_{u}+v \omega_{v}\right)} d u d v$

$$
Q(z)=\iint \underbrace{\left|j \omega_{u} \mathcal{F}(z ; \boldsymbol{\omega})-\mathcal{F}(p ; \boldsymbol{\omega})\right|^{2}+\left|j \omega_{v} \mathcal{F}(z ; \boldsymbol{\omega})-\mathcal{F}(q ; \boldsymbol{\omega})\right|^{2}}_{A(\mathcal{F}(z ; \boldsymbol{\omega}))} d \boldsymbol{\omega}, \quad \boldsymbol{\omega}=\left(\omega_{u}, \omega_{v}\right)
$$

and its minimiser is from vanishing formal derivative of $A(\mathcal{F}(z ; \boldsymbol{\omega}))$ wrt $\mathcal{F}(z ; \boldsymbol{\omega})$ [Frankot \& Chellappa 1988]

$$
\mathcal{F}(z ; \boldsymbol{\omega})=-\frac{j \omega_{u}}{|\boldsymbol{\omega}|^{2}} \mathcal{F}(p ; \boldsymbol{\omega})-\frac{j \omega_{v}}{|\boldsymbol{\omega}|^{2}} \mathcal{F}(q ; \boldsymbol{\omega})
$$

```
[m,n] = size(p);
Wu = fft2(fftshift([-1,0,1]/2),m,n); % discrete differential operator
Wv = fft2(fftshift([-1;0;1]/2),m,n);
Z = -(Wu.*fft2(p) + Wv.*fft2(q))./(abs(Wu).^2 + abs(Wv).^2 + eps);
z = real(ifft2(Z));
```


Photometric Stereo：Examples

－integrated by the FC algorithm from Slide 197
－bias due to interreflections can be removed
［Drew \＆Funt，JOSA－A 1992］

- Integrability of a Vector Field

- not every vector field $p(u, v), q(u, v)$ is integrable (born by a surface $z(u, v)$)
- integrability constraint

$$
p_{v}(u, v)=q_{u}(u, v)
$$

- this is because a regular surface has $\operatorname{rot} \nabla z(u, v)=0$

$$
z_{u v}(u, v)=z_{v u}(u, v)
$$

- noise causes non-integrability
- the FC algorithm finds the closest integrable surface

Optimal Light Configurations

For n lights \mathbf{S} the error $\Delta \mathbf{b}=\mathbf{S}^{-\top} \Delta \mathbf{J}$ in normal \mathbf{b} due to error $\Delta \mathbf{J}$ in image is

$$
\epsilon(\mathbf{S})=E\left[\Delta \mathbf{b}^{\top} \Delta \mathbf{b}\right]=E\left[\Delta \mathbf{J}^{\top}\left(\mathbf{S}^{\top} \mathbf{S}\right)^{-1} \Delta \mathbf{J}\right]=\sigma^{2} \operatorname{tr}\left[\left(\mathbf{S S}^{\top}\right)^{-1}\right] \geq \frac{9 \sigma^{2}}{n}
$$

assuming pixel-independent normal camera noise $\Delta J_{i} \sim N(0, \sigma)$
The error ϵ is minimum if
[Drbohlav \& Chantler 2005]

$$
\mathbf{S S}^{\top}=\frac{n}{3} \mathbf{I}, \quad \text { where } \quad \mathbf{S}=\left[\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{n}\right]
$$

- either $n \geq 3$ equidistant and equiradiant lights on a circle of uniform slant of $\arctan \sqrt{2} \approx 54.74^{\circ}$
- $n-1$ lights in this configuration plus a light parallel to the sum $\sum_{i=1}^{n-1} \mathbf{s}_{i}$
- or light matrix \mathbf{S} is a concatenation of optimal solutions (each of $\geq \overline{3}$ lights)
eg. 3 optimally placed $\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)+3$ lights $\left(\mathbf{s}_{4}, \mathbf{s}_{5}, \mathbf{s}_{6}\right)=\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)+\alpha$ rotated by angle α around \mathbf{n}

Uncalibrated Photometric Stereo

Factorization $\quad \mathbf{J}=\mathbf{S}^{\top} \mathbf{B}$
LS solution by SVD decomposition of $\mathbf{J}=\mathbf{U D V}^{\top}$

$$
\begin{array}{lll}
\mathbf{S}=\mathbf{D}_{1: 3} \mathbf{U}^{\top} & \text { scaled pseudo-lights } & \\
\mathbf{B}=\left(\mathbf{V}_{1: 3}\right)^{\top} & \text { scaled pseudo-normals } & \mathbf{V}_{1: 3} \text { are columns 1-3 }
\end{array}
$$

```
Ambiguity \(\quad \mathbf{J}=\mathbf{S}^{\top} \mathbf{B}=\underbrace{\mathbf{S}^{\top} \mathbf{A}^{-1}}_{\overline{\mathbf{S}}^{\top}} \underbrace{\mathbf{A B}}_{\overline{\mathbf{B}}}, \quad \mathbf{A} \in G L(3)\)
[Koenderink94]
information ambiguity
```


-Generalized Bas Relief Ambiguity (GBR)

GBR maps surface $z^{\prime}(u, v)=\lambda z(u, v)+\mu u+\nu v$, i.e. it maps normals to $\mathbf{n}^{\prime}=\mathbf{G n}$, where

$$
\mathbf{G}=\left[\begin{array}{ccc}
\lambda & 0 & -\mu \\
0 & \lambda & -\nu \\
0 & 0 & 1
\end{array}\right]
$$

Obs: If normals change $\mathbf{n}^{\prime}=\mathbf{G} \mathbf{n}$ and lights change $\mathbf{1}^{\prime}=\mathbf{G}^{-\top} \mathbf{l}$ then Lambertian shading does not change:

$$
\mathbf{n}^{\prime \top} \mathbf{l}^{\prime}=\left(\mathbf{n}^{\top} \mathbf{G}^{\top}\right)\left(\mathbf{G}^{-\top} \mathbf{l}\right)=\mathbf{n}^{\top} \mathbf{l}
$$

Reproduced from [Belhumeur et al. 1997]
Obs: Shadow boundaries of surface \mathcal{S} illuminated by light 1 are identical to those of surface \mathcal{S}^{\prime} transformed by GBR \mathbf{G} and illuminated by light $\mathbf{1}^{\prime}=\mathbf{G}^{-\top} \mathbf{l}$
weak assumptions [Belhumeur et al. 1997]

－A Quick Glance at the Classical Differential Geometry of Surfaces

Darboux frame

> umbilical
convex $\quad \kappa_{1}=\kappa_{2}>0$
concave

$$
\kappa_{1}=\kappa_{2}>0
$$

$$
\begin{gathered}
\text { elliptical } \\
\kappa_{1}>0, \kappa_{2}>0 \\
\kappa_{1}<0, \kappa_{2}<0
\end{gathered}
$$

the transition elliptic \rightarrow parabolic \rightarrow hyperbolic occurs at parabolic lines
non－umbilical surface like a torus

－Occluding Contour Structure

smooth self－occlusion contour（back） not smooth contour（mane）
－surface curves are tangent to smooth self－occlusion contour

－isophotes are surface curves \Rightarrow their density approaches infinity on smooth self－occlusion contour
$\mathbf{n}=\mathbf{Q}^{\top} \underline{\mathbf{t}} \quad$ optical plane normal
$K=\kappa_{s} \kappa_{t} \quad \rightarrow \quad \operatorname{sign}(K)=\operatorname{sign}\left(\kappa_{t}\right)$
$\kappa_{s}>0$－curvature in the direction of sight κ_{t}－occluding contour curvature

$$
\mathbf{x}_{s t}=0 \text { since } \mathbf{x}_{s} \simeq \mathbf{v}[\text { Koenderink } 84]
$$

－this is a basis for shape from occluding contour

Self－Shadow Contour Structure

－loci where occluding and self－shadow meet：the projection of light direction vector to image plane is tangent to the contour there

Isophotes on Simple Lambertian Surfaces

Surface is parameterized by: σ - slant, τ - tilt, where $\mathbf{n}^{\top} \mathbf{l}=\cos \sigma$

- isophotes - green
- apex - where $\mathbf{n} \simeq \mathbf{l}$
- isophotes parallel to rulings on developable surfaces
- illuminant on cylinder axis: constant reflectance cylindrical part illumination w/o shading
- in general: isophotes are parallel to zero-curvature principal direction

Isophotes on a Complex Surface

shaded Lambertian surface

isophotes $\mathrm{w} /$ approximate parabolic curves
singular image points

- Lambertian apex: move with light, $\mathbf{n}=\mathbf{l}$ (T1)
- extrema and saddles on parabolic lines: move along parabolic lines (T2)
- planar points: do not move (not shown)
- specular points: move with light and/or viewer but slower (not shown)
[Koenderink \& van Doorn 1980]

The Crater Illusion

Ambiguity in Local Shading and The Human Vision Preference

Apollo 17 landing site (Taurus-Littrow); courtesy of NASA

Shading at Lambertian apex:

$$
\begin{gathered}
K^{2}=\operatorname{det}\left(\mathbf{H G}^{-1}\right) \\
2 H^{2}-K=-\frac{1}{2} \operatorname{tr}\left(\mathbf{H G}^{-1}\right) \\
\mathbf{H}=\left[\begin{array}{cc}
I_{u u} & I_{u v} \\
I_{u v} & I_{v v}
\end{array}\right] \quad \text { image Hessian } \\
\mathbf{G}=\left[\begin{array}{cc}
1+l_{1}^{2} & l_{1} l_{2} \\
l_{1} l_{2} & 1+l_{2}^{2}
\end{array}\right] \quad \text { from light dir. } \mathbf{l}=\left(l_{1}, l_{2}, l_{3}\right)
\end{gathered}
$$

bottom: crater-like surface top: surface illuminated from lower-left and top-right

Apex: Up to 4 solutions for surface principal curvatures:
convex/concave \times elliptic/hyperbolic

Thank You

Camera 0, im. 6: Reprojection errors (16x)

Calibration errors

Radial distortion coefficient values

3D Computer Vision: enlarged figures
R. Šára, CMP; rev. 18-Dec-2012 ©血:

ROC curves and their average error rate bounds

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

[^0]: Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

