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PAC Learning Summary

Concept class (efficiently) PAC learnable by a hypothesis class if

a consistent hypothesis can be (efficiently) produced for each sample

size of hypothesis space at most exponential

Two weeks ago we proved PAC-learnability of threshold hypotheses on
[0; 1]

0 1θl u

Guarantee successful learning

Here PAC-learnability does not follow from the above principle since there
are ∞ threshold hypotheses. Can we extend the above principle to cover
infinite hypothesis classes?
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An Intuitive Approach

Assume θ has finite precision, say 64 bits. In a digital machine, this is the
case anyway.

For threshold hypotheses on [0, 1]:

ln |F | = ln |264| = 64 ln 2

For threshold hypotheses

f (x) = 1 iff θ1x
(1) + θ2x

(2)
> 0

on [0, 1]2 :
ln |F | = ln |22·64| = 128 ln 2

Generally for hypothesis classes with n parameters

ln |F | = ln |264n| = 64n ln 2 = O(n)
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An Intuitive Approach (cont’d)

ln |F | linear in number of hypothesis-class parameters and precision of
real-number representation

Approach seems viable, allows PAC-learning

Problem:

F1: f (x) = 1 iff θ1x
(1) + θ2x

(2)
> 0 2 parameters

F2: f (x) = 1 iff |θ1 − θ2|x(1) + |θ3 − θ4|x
(2)

> 0 4 parameters

Different number of parameters but F1 = F2!

Instead of the number of parameters and precision, we will build a different
characterization of infinite hypothesis classes.
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ΠF function

A finite sample from PX will be called an x-sample.

x1, x2, . . . instead of (x1, y1), (x2, y2), . . .

Remind the set-notation we earlier introduced for hypotheses:

x ∈ f means the same as f (x) = 1

ΠF function

For any X and F and a finite x-sample S define

ΠF (S) = {f ∩ S | f ∈ F}

We call f ∩ S a labelling on S. ΠF (S) gives all labellings of S possible
with hypotheses from F
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ΠF function: Example

Let F be threshold hypotheses on [0, 1] and S = {0.3, 0.7}

ΠF (S) = {{0.3, 0.7}, {0.7}, {}}

0 1

θ 0.3 0.7

c
0 1

θ0.3 0.7

c
0 1

θ0.3 0.7

c

but
{0.3} /∈ ΠF (S)

0 1

0.3 0.8
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Shattering

Shattering

If |ΠF (S)| = 2|S| then S is shattered by F .

S is shattered by F if for any subset S′ ⊆ S there is a hypothesis f ∈ F
such that f ∩ S = S′.

Example: let F be threshold hypotheses on [0, 1]

{0.3} and {0.7} are shattered by F

{0.3, 0.7} is not shattered by F
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VC Dimension

VC Dimension

The Vapnik-Chervonenkis dimension of F , denoted V(F ), is the largest d
such that some x-sample of cardinality d is shattered by F . If no such d
exists, then V(F ) = ∞.

Example: let F be threshold hypotheses on [0, 1]

{0.3} is shattered by F

No x-sample S of cardinality 2 is shattered by F because
{min S} ⊆ S, but S∩ f = {minS} for no f ∈ F .

Since no x-sample of cardinality 2 is shattered, no x-sample of
cardinality > 2 is shattered

Therefore V(F ) = 1.
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VC Dimension: Examples
Let F be intervals [a, b], 0 < a, b < 1

{0.3, 0.7} is shattered by F

No x-sample of cardinality 3 or higher is shattered by F because
{min S,maxS} ⊆ S but S∩ f = {minS,max S} for no f ∈ F .

Therefore V(F ) = 2.

Two points shattered

0 1

c

0 1

c

0 1

c

0 1

c

No three points can be shattered, the middle one can never be left out

0 1
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VC Dimension: Examples

Let F be unions of k disjoint intervals [a, b]

An x-sample of 2k elements shattered by F

No x-sample of cardinality 2k + 1 or higher is shattered by F . Let
S = {x1, x2, . . . , x2k+1} such that xi < xj for i < j. Then for

S′ = {x1, x3, . . . x2k+1}

S′ ⊆ S but S′ = S∩ c for no f ∈ F .

Therefore V(F ) = 2k.

No 2k + 1 points can be shattered

0 1

1 2 k
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VC Dimension: Examples

Let F be half-planes in R2

Some 3 points can be shattered (obvious)

No 4 points can be shattered. Clear if three of them in line. If not,
then two cases possible, and impossible labelling exists in each:

V(F ) = 3

similarly shown: V(circles in R2) = 3

Generally, V(half-planes in Rn) = n+ 1
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VC Dimension: Examples

Let F be rectangles in R2

Some four points can be shattered Five can never be shattered

V(F ) = 4

More generally, V(convex tetragons) = 9

More generally, V(convex d-gons) = 2d+ 1
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PAC Learning with Infinite F : Result

PAC Learning with Infinite F

Let F be a hypothesis class with a finite V(F ) and C be concept class,
both on X. Let c ∈ C be a concept. A hypothesis f consistent with a
sample {(x1, c(x1)), . . . , (xm, c(xm))} will have e(f ) ≤ ǫ with probability
at least 1− δ if

m ≥ max

(
8

ǫ
log2

2

δ
,
8V(F )

ǫ
log2

13

ǫ

)

Therefore any C is (efficiently) PAC-learnable by F if there is an (efficient)
learner producing a consistent f ∈ F for any sample, and V(F ) is
polynomial (in the size of examples n).

As we have seen, V(F ) is usually linear in the number of hypothesis class
parameters, which corresponds to n.

Filip Železný (ČVUT) Infinite Hypothesis Spaces January 6, 2012 13 / 17



V(F ): Remarks

The result can be rewritten into a simpler form

m ≥ c0

(
V(F )

ǫ
log2

1

ǫ
+

1

ǫ
log2

1

δ

)

where c0 is a constant.

The result holds also for finite F . For some F , it may even provide
better bounds than those we derived specially for finite F .

Finite V(F ) is also a necessary condition for PAC-learning. It can be
proved that at least

V(F )− 1

64ǫ

examples are needed to PAC-learn a concept class with F if
δ ≤ 1/15.
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Error Bounds for Infinite F

V(F ) also enables to derive error bounds for inconsistent hypotheses.
V(F ) is ‘analogical’ to ln |F | for finite hypothesis classes.

With probability at least 1− δ, for a training set S:

|e(f )− e(S, f )| ≤ O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

and if f minimizes training error e(f ,S) then with probability at least 1− δ:

e(f ) ≤ e(f ∗) + O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

where f ∗ minimizes classification error e(f ).

Filip Železný (ČVUT) Infinite Hypothesis Spaces January 6, 2012 15 / 17



Bias-Variance Trade-off Revisited

Remind: in the finite F case, by extending F

e(f ) ≤

(

min
f∈F

e(f )

)

︸ ︷︷ ︸

‘bias’: may decrease

+ 2

√

1

2m
ln

2|F |

δ
︸ ︷︷ ︸

‘variance’: will increase

This holds analogically for infinite F

e(f ) ≤

(

min
f∈F

e(f )

)

︸ ︷︷ ︸

‘bias’: may decrease

+O

(√

V(F )

m
log2

m

V(F )
+

1

m
log2

1

δ

)

︸ ︷︷ ︸

‘variance’: will increase
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Bias-Variance Trade-off Revisited (cont’d)

Resulting behavior (we have seen this before)

small m

e(f )

e(S, f )

← bias
variance →

large m

e(f )

e(S, f )

← bias
variance →
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