Machine Learning and Data Analysis Infinite Hypothesis Spaces

Filip Železný

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Intelligent Data Analysis lab http://ida.felk.cvut.cz

January 6, 2012

- ヨト - 日日

PAC Learning Summary

Concept class (efficiently) PAC learnable by a hypothesis class if

- a consistent hypothesis can be (efficiently) produced for each sample
- size of hypothesis space at most exponential

Two weeks ago we proved PAC-learnability of threshold hypotheses on $\left[0;1\right]$

Here PAC-learnability does not follow from the above principle since there are ∞ threshold hypotheses. Can we extend the above principle to cover infinite hypothesis classes?

An Intuitive Approach

Assume θ has finite precision, say 64 bits. In a digital machine, this is the case anyway.

For threshold hypotheses on [0, 1]:

$$\ln |\mathcal{F}| = \ln |2^{64}| = 64 \ln 2$$

For threshold hypotheses

$$f(x) = 1$$
 iff $\theta_1 x^{(1)} + \theta_2 x^{(2)} > 0$

on $[0,1]^2$:

$$\ln |\mathcal{F}| = \ln |2^{2 \cdot 64}| = 128 \ln 2$$

Generally for hypothesis classes with n parameters

$$\ln |\mathcal{F}| = \ln |2^{64n}| = 64n \ln 2 = \mathcal{O}(n)$$

An Intuitive Approach (cont'd)

 $\ln |\mathcal{F}|$ linear in number of hypothesis-class parameters and precision of real-number representation

Approach seems viable, allows PAC-learning

Problem:

$$\begin{array}{ll} \mathcal{F}_{1} \colon & f(x) = 1 \, \, \text{iff} \, \, \theta_{1} x^{(1)} + \theta_{2} x^{(2)} > 0 & 2 \, \, \text{parameters} \\ \mathcal{F}_{2} \colon & f(x) = 1 \, \, \text{iff} \, \, |\theta_{1} - \theta_{2}| x^{(1)} + |\theta_{3} - \theta_{4}| x^{(2)} > 0 & 4 \, \, \text{parameters} \end{array}$$

Different number of parameters but $\mathcal{F}_1 = \mathcal{F}_2!$

Instead of the number of parameters and precision, we will build a different characterization of infinite hypothesis classes.

$\Pi_{\mathcal{F}}$ function

A finite sample from P_X will be called an *x*-sample.

```
• x_1, x_2, \ldots instead of (x_1, y_1), (x_2, y_2), \ldots
```

Remind the set-notation we earlier introduced for hypotheses:

•
$$x \in f$$
 means the same as $f(x) = 1$

$\Pi_{\mathcal{F}}$ function For any X and \mathcal{F} and a finite x-sample S define $\Pi_{\mathcal{F}}(S) = \{f \cap S \mid f \in \mathcal{F}\}$

We call $f \cap S$ a *labelling* on S. $\Pi_{\mathcal{F}}(S)$ gives all labellings of S possible with hypotheses from \mathcal{F}

イロト イヨト イヨト

$\Pi_{\mathcal{F}}$ function: Example

Let \mathcal{F} be threshold hypotheses on [0,1] and $S=\{0.3,0.7\}$

 $\Pi_{\mathcal{F}}(S) = \{\{0.3, 0.7\}, \{0.7\}, \{\}\}\}$

Filip Železný (ČVUT)

Shattering

Shattering

If $|\Pi_{\mathcal{F}}(S)| = 2^{|S|}$ then S is *shattered* by \mathcal{F} .

S is shattered by \mathcal{F} if for any subset $S' \subseteq S$ there is a hypothesis $f \in \mathcal{F}$ such that $f \cap S = S'$.

Example: let \mathcal{F} be threshold hypotheses on [0,1]

- $\{0.3\}$ and $\{0.7\}$ are shattered by ${\cal F}$
- $\{0.3, 0.7\}$ is not shattered by ${\cal F}$

VC Dimension

VC Dimension

The Vapnik-Chervonenkis dimension of \mathcal{F} , denoted $\mathcal{V}(\mathcal{F})$, is the largest d such that some x-sample of cardinality d is shattered by \mathcal{F} . If no such d exists, then $\mathcal{V}(\mathcal{F}) = \infty$.

Example: let \mathcal{F} be threshold hypotheses on [0,1]

- $\{0.3\}$ is shattered by ${\cal F}$
- No *x*-sample *S* of cardinality 2 is shattered by \mathcal{F} because $\{\min S\} \subseteq S$, but $S \cap f = \{\min S\}$ for no $f \in \mathcal{F}$.
- Since no x-sample of cardinality 2 is shattered, no x-sample of cardinality > 2 is shattered
- Therefore $\mathcal{V}(\mathcal{F}) = 1$.

- 4 同 6 4 日 6 4 日 6

Let \mathcal{F} be intervals [a, b], 0 < a, b < 1

- $\{0.3, 0.7\}$ is shattered by $\mathcal F$
- No *x*-sample of cardinality 3 or higher is shattered by \mathcal{F} because $\{\min S, \max S\} \subseteq S$ but $S \cap f = \{\min S, \max S\}$ for no $f \in \mathcal{F}$.
- Therefore $\mathcal{V}(\mathcal{F}) = 2$.

Two points shattered

No three points can be shattered, the middle one can never be left out

Let \mathcal{F} be unions of k disjoint intervals [a, b]

- An x-sample of 2k elements shattered by ${\mathcal F}$
- No x-sample of cardinality 2k + 1 or higher is shattered by \mathcal{F} . Let $S = \{x_1, x_2, \dots, x_{2k+1}\}$ such that $x_i < x_j$ for i < j. Then for

$$S' = \{x_1, x_3, \dots x_{2k+1}\}$$

$$S' \subseteq S$$
 but $S' = S \cap c$ for no $f \in \mathcal{F}$.

• Therefore $\mathcal{V}(\mathcal{F}) = 2k$.

No 2k + 1 points can be shattered

Let \mathcal{F} be half-planes in \mathbb{R}^2

- Some 3 points can be shattered (obvious)
- No 4 points can be shattered. Clear if three of them in line. If not, then two cases possible, and impossible labelling exists in each:

• $\mathcal{V}(\mathcal{F}) = 3$

- similarly shown: $\mathcal{V}(\text{circles in } \mathbb{R}^2) = 3$
- Generally, $\mathcal{V}(\mathsf{half}\mathsf{-planes} \text{ in } R^n) = n+1$

Let $\mathcal F$ be rectangles in $\mathbb R^2$

• $\mathcal{V}(\mathcal{F}) = 4$

- More generally, $\mathcal{V}(\text{convex tetragons}) = 9$
- More generally, $\mathcal{V}(\text{convex } d\text{-gons}) = 2d + 1$

PAC Learning with Infinite \mathcal{F} : Result

PAC Learning with Infinite ${\cal F}$

Let \mathcal{F} be a hypothesis class with a finite $\mathcal{V}(\mathcal{F})$ and \mathcal{C} be concept class, both on X. Let $c \in \mathcal{C}$ be a concept. A hypothesis f consistent with a sample $\{(x_1, c(x_1)), \ldots, (x_m, c(x_m))\}$ will have $e(f) \leq \epsilon$ with probability at least $1 - \delta$ if

$$m \geq \max\left(rac{8}{\epsilon}\log_2rac{2}{\delta}, rac{8\mathcal{V}(\mathcal{F})}{\epsilon}\log_2rac{13}{\epsilon}
ight)$$

Therefore any C is (efficiently) PAC-learnable by \mathcal{F} if there is an (efficient) learner producing a consistent $f \in \mathcal{F}$ for any sample, and $\mathcal{V}(\mathcal{F})$ is polynomial (in the size of examples n).

As we have seen, $\mathcal{V}(\mathcal{F})$ is usually linear in the number of hypothesis class parameters, which corresponds to n.

$\mathcal{V}(\mathcal{F})$: Remarks

• The result can be rewritten into a simpler form

$$m \ge c_0 \left(\frac{\mathcal{V}(\mathcal{F})}{\epsilon} \log_2 \frac{1}{\epsilon} + \frac{1}{\epsilon} \log_2 \frac{1}{\delta} \right)$$

where c_0 is a constant.

- The result holds also for finite \mathcal{F} . For some \mathcal{F} , it may even provide better bounds than those we derived specially for finite \mathcal{F} .
- \bullet Finite $\mathcal{V}(\mathcal{F})$ is also a necessary condition for PAC-learning. It can be proved that at least

$$\frac{\mathcal{V}(\mathcal{F})-1}{64\epsilon}$$

examples are needed to PAC-learn a concept class with ${\mathcal F}$ if $\delta \leq 1/15.$

Error Bounds for Infinite ${\cal F}$

 $\mathcal{V}(\mathcal{F})$ also enables to derive error bounds for inconsistent hypotheses. $\mathcal{V}(\mathcal{F})$ is 'analogical' to $\ln |\mathcal{F}|$ for finite hypothesis classes.

With probability at least $1 - \delta$, for a training set S:

$$|e(f) - e(S, f)| \le \mathcal{O}\left(\sqrt{\frac{\mathcal{V}(\mathcal{F})}{m}\log_2\frac{m}{\mathcal{V}(\mathcal{F})} + \frac{1}{m}\log_2\frac{1}{\delta}}\right)$$

and if f minimizes training error e(f, S) then with probability at least $1 - \delta$:

$$e(f) \le e(f^*) + \mathcal{O}\left(\sqrt{\frac{\mathcal{V}(\mathcal{F})}{m}\log_2\frac{m}{\mathcal{V}(\mathcal{F})} + \frac{1}{m}\log_2\frac{1}{\delta}}\right)$$

where f^* minimizes classification error e(f).

Bias-Variance Trade-off Revisited

Remind: in the finite ${\mathcal F}$ case, by extending ${\mathcal F}$

This holds analogically for infinite ${\cal F}$

Bias-Variance Trade-off Revisited (cont'd)

Resulting behavior (we have seen this before)

