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Goals:

The text provides a pool of exercises to be solved during AE4M33RZN tutorials on graphical
probabilistic models. The exercises illustrate topics of conditional independence, learning
and inference in Bayesian networks. The identical material with the resolved exercises will
be provided after the last Bayesian network tutorial.

1 Independence and conditional independence

Exercise 1. Formally prove which (conditional) independence relationships are encoded by
serial (linear) connection of three random variables.
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Exercise 2. Having the network/graph shown in figure below, decide on the validity of

following statements:

a) Py, Ps 1L Pg|Ps,
b) P, Ps|o,

¢) Py 1L P|P,

d) P, 1L Py, P5|Py,

e) Markov equivalence class that contains the shown graph contains exactly three directed
graphs.



2 Inference
Exercise 3. Given the network below, calculate marginal and conditional probabilities

Pr(=ps), Pr(p2|—ps), Pr(pilp2,—p3) a Pr(pi|-ps,ps). Apply the method of inference
by enumeration.

Pr(p,)=04

Pr(p;|p,)=0.8
Pr(p;|-p4)=0.5

Pr{p,|p,)=0.8
Pr(pyl—p;)=0.5

Pr(p;|p,)=0.2
Pr(p;|-p;)=0.3

Exercise 4. For the same network calculate the same marginal and conditional probabilities
again. Employ the properties of directed graphical model to simplify manual computation.

Exercise 5. For the same network calculate the conditional probability Pr(pi|p2, —p3)
again. Apply a sampling approximate method. Discuss pros and cons of rejection sam-
pling, likelihood weighting and Gibbs sampling. The table shown below gives an output of a
uniform random number generator on the interval (0,1), use the table to generate samples.

1 T2 T3 T4 Ts5 76 r7 T8 79 710
0.2551 0.5060 0.6991 0.8909 0.9593 0.5472 0.1386 0.1493 0.2575 0.8407
T11 r12 T13 714 T15 T16 r17 r18 T19 720
0.0827 0.9060 0.7612 0.1423 0.5888 0.6330 0.5030 0.8003 0.0155 0.6917

Exercise 6. Let us have three tram lines — 6, 22 and 24 — reqularly comming to the stop in
front of the faculty building. Line 22 operates more frequently than line 24, 24 goes more
often than line 6 (the ratio is 5:3:2, it is kept during all the hours of operation). Line 6
uses a single car setting in 9 out of 10 cases during the daytime, in the evening it always
has the only car. Line 22 has one car rarely and only in evenings (1 out of 10 tramcars).
Line 24 can be short whenever, however, it takes a long setting with 2 cars in 8 out of 10
cases. Albertov is available by line 24, lines 6 and 22 are headed in the direction of IP
Pavlova. The line changes appear only when a tram goes to depot (let 24 have its depot in
the direction of IP Pavlova, 6 and 22 have their depots in the direction of Albertov). Every
tenth tram goes to the depot evenly throughout the operation. The evening regime is from
6pm to 24pm, the daytime regime is from Gam to 6pm.

a) Draw a correct, efficient and causal Bayesian network.

b) Annotate the network with the conditional probability tables.



c) It is evening. A short tram is approaching the stop. What is the probability it will go
to Albertov?

d) There is a tram 22 standing in the stop. How many cars does it have?

Exercise 7. Trace the algorithm of belief propagation in the network below knowing that
e = {p2}. Show the individual steps, be as detailed as possible. Explain in which way the
unevidenced converging node P blocks the path between nodes Py and Ps.

Pr(p,)=0.7

Pr(ps|ps,p2)=0.1

Pr(ps|ps, —p2)=0.3
Pr(ps| —p4,p2)=0.8
Pr(pa| —p1, —p2)=1



3 (Conditional) independence tests, best network structure

Exercise 8. Let us concern the frequency table shown below. Decide about independence
relationships between A and B.

b |-b| b |-b
a | 14] 8 25] 56
—a [ 54| 25| 7|11

4 Dynamic Bayesian networks

Exercise 9. A patient has a disease N. Physicians measure the value of a parameter P
to see the disease development. The parameter can take one of the following values {low,
medium, high}. The value of P is a result of patient’s unobservable condition/state S. S can
be {good, poor}. The state changes between two consecutive days in one fifth of cases. If the
patient is in good condition, the value for P is rather low (having 10 sample measurements,
5 of them are low, 8 medium and 2 high), while if the patient is in poor condition, the value
is rather high (having 10 measurements, 3 are low, 3 medium and 4 high). On arrival to
the hospital on day 0, the patient’s condition was unknown, ie. Pr(Sy = good) = 0.5.

a) Draw the transition and sensor model of the dynamic Bayesian network modeling the
domain under consideration,

b) calculate probability that the patient is in good condition on day 2 given low P values
on days 1 and 2,

c) can you determine the most likely patient state sequence in days 0, 1 and 2 without
any additional computations?, justify.



