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density propagation
importance sampling
efficient 3D head tracking by particle filter

2D tracking

What is tracking?

¢ At a certain time we need decide about one state (position) of the
target object.

¢ Inner state representation can be arbitrary.
@ Let represent the state of the object by probability density.

¢ Representing of the probability density by particles is one of the
effective choices.

Particle filter: Particles a the input, measurements, update, . . ., particles at
the output.

Particle filter in computer vision

technique known outside computer vision for long

popularized under the acronym CONDENSATION in 1996 [4]
CONDENSATION stands for CONditional DENSity propagATION
simple, easy to implement, robust . . .

frequently used in many algorithms
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comprehensive overview [2]



Density propagation
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'Figure from [1]

Particle filtering

Input: S; | = {(S(tﬂ)iﬂf(tq)i)} , t=12,...,N.
Output: S; and object state (position) if required
Workflow for time ¢

1. Resample data S;_1 by using importance sampling.
Predict S(;);, think about position and velocity model.

Uncertainty in the state change — noisify the predicted states.
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Measure how well the predicted states fit the observation, and update
weights 7r;.

o

If needed compute the mean state (where is the target, actually?).

6. Update the prediction model if used.

One condensation step
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Importance sampling

Input: set of samples with associated probabilities

Ouput: new set of samples where the frequency depends proportionally on
their probabilities
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video: importance sampling
®
Example: 1-D tracking
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video: 1-D tracking



Example: 1-D tracking, closer look
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video

3D head tracking in multicamera
system—essentials

Assume calibrated system, P/, and motion segmentated projections

(¢ |
¢ Head modeled as ellipsoid
¢ State comprises position, orientation, velocity vector . . .
¢ Ellipsoid project as ellipses into cameras

¢ We measure how far are the ellipses from contours

We will go step by step . . .



Ellipsoid and its 2D projection

Quadric surface Q “

XX =0 "
project to a (line) conic

c*=PQ'P'
point conic C which is dual to C* 3

u'cu=0

3Image from [3]

Measurement in (multiple) images

Remeber, we can efficiently project outline of the ellipsoid to images.

video: segmented data video: distance map to edges

Chamfer distance
¢ distance map computed just once per image

¢ measuring samples is just reading out values from a table

Head 3D tracking — results

video: 3D localization results video: example of particles convergence

Problem: 3D position only, no orientation . . .



Learning appearance
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video: Learning head appearance

¢ Combines stereo and gradient based localization.

¢ Explanation of the principle [PDF; www*]. More in [6].

*http://cmp.felk.cvut.cz/projects/multicam/Demos/3Dtracking. html

3D tracking — including appearance

Model

Image from Image with the
the camera projected model

Area from
the real image

Area with
the model

Comparison with the
Similarity Measure

See [5] for details.

3D tracking — similarity measure
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Oponent colors

)
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a=5(R-G), b=12B-R-G), abe(-12812).

Histogram of oponent colors Bhattacharya distance

bhatta(L,M) = > "\ [Tp, M, ;.
k,l \/7

20
b channel of opponent colors o a channel of opponent colors



3D tracking — Results
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video: 3D tracking including orientation
No post-processing, no smoothing applied.
@
2D tracking — object modeled by color histogram
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video
@
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