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Recognition with Local Features

Strengths:

 applicable to many objects (e.g. in 
image stitching)

 is real-time

 scales well to very large problems 
(retrieval of millions of images)

 handles occlusion well

 insensitive to a broad class of image 
transformations

Weaknesses:

 applicable to recognition of specific 
objects (no categorization)

 applicable only to objects with 
distinguished local features

Slide credit: David Lowe



Recognition with the Scanning Window (Viola-Jones)

Strengths:

● applicable to many classes of objects

● not restricted to specific objects
● often real-time 

Weaknesses:

● extension to a large number of classes not straightforward (standard 
implementation: linear complexity in the number of classes)

● occlusion handling not easy
● full 3D recognition requires too many windows to be checked

● training time is potentially very long

3/25
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Hough Transform

 Origin: Detection of straight lines in clutter
• Basic idea: each candidate point votes 

for all lines that it is consistent with.

• Votes are accumulated in quantized array

• Local maxima correspond to candidate lines

 Representation of a line
• Usual form y = a x + b has a singularity around 90º.

• Better parameterization: x cos(θ) + y sin(θ) = ρ
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Hough Transform for Straight Lines

 Define the parametrisation of the space of  lines. 
Most common: ρ, θ. 
Other options: slope + intercept, nearest point to center, ...  

 Quantize the Hough space: identify the maximum and minimum values 
of ρ and θ, and the number of cells, 

 Create an accumulator array A(ρ, θ); set all values to zero
 (if grandient available)

For all edge points (xi, yi) in the image
• if available, use gradient direction for θ
• Compute ρ from the equation
• Increment A(ρ, θ) by one

 (if grandient not available)
For all edge points (xi, yi) in the image
• Increment A(ρ, θ) by one for all lines incident on x,y

 For all cells in A(ρ, θ) 
• Search for the maximum value of A(ρ, θ)
• Calculate the equation of the line

 To reduce the effect of noise more than one element (elements in a 
neighborhood) in the accumulator array are increased
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Hough Transform: Noisy Line

 Problem: Finding the true maximum

Tokens Votes
θ

ρ

Slide credit: David Lowe
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Hough Transform: Noisy Input

 Problem: Lots of spurious maxima

Tokens Votes

Slide credit: David Lowe
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Generalized Hough Transform [Ballard81]

 Generalization for an arbitrary contour or shape
• Choose reference point for the contour (e.g. center)

• For each point on the contour remember where it is located w.r.t. to the 
reference point 

• Remember radius r and angle φ
relative to the contour tangent

• Recognition: whenever you find 
a contour point, calculate the 
tangent angle and ‘vote’ for all 
possible reference points

• Instead of reference point, can also vote for transformation

⇒ The same idea can be used with local features!

Slide credit: Bernt Schiele
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Gen. Hough Transform with Local Features

 For every feature, store possible “occurrences”

– Object identity
– Pose
– Relative position

• For new image, let the matched features vote for 
possible object positions
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Finding Consistent Configurations

 Global spatial models
• Generalized Hough Transform [Lowe99]

• RANSAC [Obdrzalek02, Chum05, Nister06]

• Basic assumption: object is planar

 Assumption is often justified in practice
• Valid for many structures on 

buildings

• Sufficient for small viewpoint 
variations on 3D objects
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3D Object Recognition

 Gen. HT for Recognition
• Typically only 3 feature matches 

needed for recognition

• Extra matches provide robustness

• Affine model can be used for planar 
objects

Slide credit: David Lowe

[Lowe99]
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Comparison

Gen. Hough Transform

 Advantages

• Very effective for recognizing arbitrary 
shapes or objects

• Can handle high percentage of outliers 
(>95%)

• Extracts groupings from clutter in 
linear time

 Disadvantages

• Quantization issues

• Only practical for small number of 
dimensions (up to 4)

 Improvements available

• Probabilistic Extensions

• Continuous Voting Space

RANSAC

 Advantages

• General method suited to large range of 
problems

• Easy to implement

• Independent of number of dimensions

 Disadvantages

• Only handles moderate number of 
outliers (<50%)

 Many variants available, e.g.

• PROSAC: Progressive RANSAC [Chum05

• Preemptive RANSAC [Nister05]
[Leibe08]
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Thank you for your attention.
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