GRAPHICAL MARKOV MODELS (WS2011) 3. SEMINAR

Assignment 1. Consider a fully specified HMM for sequence pairs (x, s) of length n given by

$$p(x,s) = p(s_1) \cdot \prod_{i=2}^{n} p(s_i \mid s_{i-1}) \cdot \prod_{i=1}^{n} p(x_i \mid s_i)$$

Let $k^* \in K$ be a fixed, special hidden state. Let us call a subset of positions $I \subset \{1, 2, ..., n\}$ a *segmentation* and associate a subset of hidden state sequences with each segmentation:

$$\mathcal{S}(I) = \{ s \in K^n \mid s_i = k^*, \forall i \in I \text{ and } s_i \in K \setminus k^*, \forall i \notin I \}.$$

a) Find an efficient algorithm for calculating $p(x, \mathcal{S}(I))$.

b) Suppose we want to find the most probable segmentation given an observed feature sequence x

$$I^* = \arg\max_{I} p(x, \mathcal{S}(I)).$$

Deduce an efficient algorithm for this task.

Assignment 2. Let x be a gray value image of size $n \times m$, where x_{ij} denotes the gray value of the pixel with coordinates (i, j). The task is to segment such images into an upper and lower part by a boundary represented as a sequence of height values $s_j \in \{1, 2, ..., n\}$ for all j = 1, 2, ..., m.

The prior probability for boundaries is assumed to be a homogeneous Markov chain such that $p(s_j | s_{j-1}) = 0$ if $|s_j - s_{j-1}| > 1$. The appearance model for columns \vec{x}_j given the boundary value s_j , is assumed to be conditional independent

$$p(\vec{x}_j \mid s_j) = \prod_{i \leqslant s_j} p_1(x_{ij}) \cdot \prod_{i > s_j} p_2(x_{ij}),$$

where $p_1()$ and $p_2()$ are two pd-s for gray values.

a) Deduce an efficient algorithm for determining the most probable boundary.

b) Suppose that the loss function c(s, s') for incorrectly recognised boundaries is defined by

$$c(s, s') = \sum_{j=1}^{m} (s_j - s'_j)^2.$$

Formulate the segmentation task for this case. Deduce an efficient inference algorithm.