GRAPHICAL MARKOV MODELS (WS2011)
 2. SEMINAR

We consider the following Markov chain model for all subsequent assignments. The p.d. for sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of length n with states $s_{i} \in K$ is given by:

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

The transition probabilities $p\left(s_{i} \mid s_{i-1}\right)$ and the p.d. $p\left(s_{1}\right)$ for the state of the first element are assumed to be known.

Assignment 1.

a) Suppose that the marginal p.d.s $p\left(s_{i}\right)$ for the states of the i-th element of the sequence are known for all $i=2, \ldots, n$. Then it is easy to calculate all "inverse" transition probabilities $p\left(s_{i-1} \mid s_{i}\right)$. How?
b) Describe an efficient algorithm for calculating $p\left(s_{i}\right)$ for all $i=2, \ldots, n$.

Assignment 2. Suppose that there is a special state $k^{*} \in K$. We want to know how often this state appears on average in a sequence generated by the model. Describe an efficient method for the calculation of this average.
Hint: You may use the fact that the mean value of a sum of random variables is equal to the sum of their means. The number of occurrences of the state k^{*} in a sequence s can be obviously written in the form

$$
\delta_{s_{1} k^{*}}+\delta_{s_{2} k^{*}}+\ldots+\delta_{s_{n} k^{*}} .
$$

Assignment 3. Let $A \subset K$ be a subset of states and let $\mathcal{A}=A^{n}$ denote the set of all sequences s with $s_{i} \in A$ for all $i=1, \ldots, n$. Find an efficient algorithm for calculating the probability $p(\mathcal{A})$ of the event \mathcal{A}.

Assignment 4. Suppose that the set of states K is completely ordered $(k=1,2, \ldots, m)$. The matrix of transition probabilities $p\left(s_{i}=k \mid s_{i-1}=k^{\prime}\right.$) (we assume a homogeneous model) is given by

$$
p\left(k \mid k^{\prime}\right)= \begin{cases}a & \text { if } k=k^{\prime}, k^{\prime} \neq m \\ b & \text { if } k=k^{\prime}+1, k^{\prime} \neq m \\ 1 & \text { if } k=k^{\prime}=m \\ 0 & \text { else }\end{cases}
$$

where $a, b>0$ and $a+b=1$. The probability $p\left(s_{1}\right)$ for the state of the first element is 1 for $k=1$ and 0 else.
a) Calculate the probability $p\left(s_{i}=1\right)$.
\mathbf{b}^{*}) Calculate the probabilities $p\left(s_{i}=k\right)$ for $k \neq 1$.

Assignment 5. Suppose that $|K|=2$ and that the matrix of transition probabilities (we assume a homogeneous model) is given by

$$
p\left(k \mid k^{\prime}\right)= \begin{cases}1-\alpha & \text { if } k=k^{\prime} \\ \alpha & \text { else }\end{cases}
$$

Verify that the chain is irreducible and aperiodic. Calculate the n-th power of the matrix of transition probabilities and the stationary (marginal) distribution.

