
Cloud Robotics: Using Google Maps

for NIFTi Robot Localization

Tomas Nouza
Supervised by: Michal Reinstein

January 30, 2012

1

Abstract

This document concerns cloud services and intends to bring more insight
into the current state of the art of the map visualization services. In princi-
ple, cloud services enable distribution of computing power to many computers.
Robots often have many sensors but not as much computing power to analyze
all sensors in all ways we want in real-time. It is favourable to distribute compu-
tation power to other devices to allow robots to use low-voltage processors and
hence extend battery life. For this purpose, the Robot Operating system (ROS)
[1] is an ideal solution. The ROS is an open source, meta-operating system
for robots developed by Willow Garage [2] and is considered a current state of
the art among software for robots. It provides services that would be expected
from an operating system, including hardware abstraction, low-level device con-
trol, implementation of commonly-used functionality, message-passing between
processes, and package management. It also provides tools and libraries for ob-
taining, building, writing, and running code across multiple computers. More
about the ROS and cloud robotics can be found in [3].

When any robot finishes his mission, it is essential to have a report covering
important details regarding the performance and overall operation. The aim of
this project is to provide a complete solution including:

• simple and effective sharing of reports with authorized persons

• online precise map visualization

• software background that is easily extendable to any Objects of interest
to be included into the report

In regard to the points above, it is beneficial to use the state of the art public
cloud services such as the Google services to solve this problem.

2

Contents

1 Introduction 4

2 Theory, Methodology and Resources 5
2.1 Resources . 5
2.2 kmlexport node . 6

2.2.1 User documentation . 6
2.2.2 Technical documentation 6

2.3 Googlemaps node . 6
2.3.1 User documentation . 6
2.3.2 Technical documentation 7

3 Evaluation and Results 8
3.1 kmlexport node . 8
3.2 Googlemaps node . 9

4 Discussion 11

5 Conclusion 12

A headers 12
A.1 kmllogger.cpp . 12
A.2 googlemaps.py . 12

3

1 Introduction

In this work we will look closer to some Google services and their possible ap-
plication on the search and rescue robot developed as part of the NIFTi project.
NIFTi [4] is a European project focusing on tasks in Urban Search & Rescue.
It concerns human-robot cooperation in dynamic environments. Sharing of in-
formation via various interfaces is crucial for any human-robot cooperation and
hence visualization of the robot’s trajectory and other things, that robot has
recognized during mission (cars, victims, etc.), is key for the robot operators.

The Google Maps API [5] is a powerful tool for visualizing almost everything
into online maps. KML (Keyhole Markup Language) [6] is XML like format for
describing geographical data. It is an international standard maintained by the
Open Geospatial Consortium, Inc. (OGC) [7]. This standard is used in all
Google service for geographical input.

Another useful tool is the Google Fusion Tables (GFT) [8]. It is a mod-
ern data management and publishing web application that makes it easy to
host, manage, collaborate on, visualize, and publish data tables online. Data
visualization can be obtained through the Google Maps.

For running any application on the robot is essential to use the ROS [1].
It provides automatic management system for message-passing between nodes
[9]. A node is an executable that uses the ROS to communicate with other
nodes using topics [10]. Topics are named buses over which nodes exchange the
data in the form of messages. When using a computer network connected to
the robot(s), the ROS automatically passes messages, so any node running on
one computer can interact with all the other nodes. No code implementation
is needed since it is open source package based finished solution provided by
Willow Garage [2].

Another handy service is the Google Latitude [11]. It saves user current
position and publishes it to other authorized users. Every upload of position
is saved with a time-stamp creating an easily accessible history. Benefit is the
simplicity but it needs internet connection all the time which would be problem
in many locations (e.g., tunnel, building on fire, etc.). Main disadvantage is that
there is no way to visualize anything more than just the position information.

The main aims of this work are:

• To analyze the current state of the art regarding cloud robotics.

• To analyze the possibilities of the Google API for cloud and web services.

• To implement a node for processing of GPS trajectory and detected objects
into KML files using Google standards to ensure easy and robust export
to online GFT or Google Earth application.

• To evaluate this node on real GPS data.

• To create a demo program, which in a robust way collects the desired
trajectory data and if the internet connection is available uploads these
data to the robot’s Gmail account.

4

• To upload final code to the NIFTi project SVN [12].

2 Theory, Methodology and Resources

2.1 Resources

BlueBotics Unmanned Ground Vehicle (UGV) [13] on Fig. 1 is a robotic
platform developed for the purpose of the NIFTi project. For its localization it
can use the SICK LMS-151 laser scanner, the Point Grey Ladybug 3 omnicamera
and the MTI-G Xsens inertial unit (IMU) with a GPS module. Combination
of these should provide sufficient position accuracy of the robot. At this stage,
implementation of corresponding data fusion is still under development and
hence the GPS module was the only source of absolute position information.
Colleges from ETH Zürich developed the mtig node for reading data from GPS
and IMU. This node can be considered a driver layer in ROS and hence is used
in this work as standard data input.

Figure 1: BlueBotics UGV [13] used in NIFTi project [4]

Google Earth (GE) [14] is a free virtual globe, map and geographical infor-
mation program. It maps the Earth by the superimposition of images obtained
from satellite imagery, aerial photography and GIS 3D globe. A strong feature
of the GE is the ability to open and process KML files which could also be
linked to other KML files that can even change dynamically. In KML there are
many kinds of objects we can draw into the globe [6].

Google Fusion Tables (GFT) [8] is a web service that offers functionalities
and possibilities similar to an SQL database but it has many above-standard
functions. It provides means for visualizing the data with charts, plots, timelines
as well as geographical maps. It has data type geometry in which KML code
can be inserted. There are many limitations [15], e.g. as how much code can be
inserted into one row, but fortunately GFT is labelled as beta which means that
it is still under development and we expect there will be many improvements in
the future. At this stage there can be inserted only 3 types of objects: point,

5

line and polygon. In comparison to the GE it is not as much but it is sufficient
for most requirements.

2.2 kmlexport node

2.2.1 User documentation

kmlexport is a ROS node that allows almost real-time drawing of robots
trajectory into a KML file, which can be opened in Google Earth application
as shown in Fig. 3. Once started, the program creates link.kml file in /kml

directory which links to the actual KML file being created. Then it listens to the
NavSatFix message published on the /mtig node/pos nav topic and generates
a new KML. After execution the kmlexport, it is possible to open the link.kml

in the Google Earth and the actual robot’s position is plotted and then refreshed
every 5 seconds. To run the kmlexport node look at chapter 4.1.

2.2.2 Technical documentation

kmlexport can be modified using the following parameters in the source code:

• LINK REFRESH FREQ sets refresh rate for the link.kml in seconds.

• KML UPDATE FREQ sets the frequency of generation of new KML file (num-
ber of messages).

• LON ACC & LAT ACC to reduce number of points in KML file, there is a
filtering to a minimum position change (in degrees, LAT means latitude,
LON means longitude).

• ROBOT NAME specifies robot name to be shown in title.

• ALTITUDE defines height of the trajectory displayed above terrain (in me-
ters).

2.3 Googlemaps node

2.3.1 User documentation

googlemaps is a ROS node that records robot’s trajectory and objects1 that
robot recognized and uploads it to the Google Fusion Tables where it can be
visualized in the Google maps. As a first thing there is a focus to create a
fusion table. If internet connection is not available, this is done later. De-
fault start position is set to the 50.076652 N, 14.416872 E what is a default
robot’s position in CTU lab. Odometry messages published on the /odom topic
are subscribed and used for robot’s localization until the GPSFix messages pub-
lished on the /mtig node/pos nav2 gives a valid GPS value. Then only this
/mtig node/pos nav2 is used for localization but the Odometry messages are

1only car detector is implemented at this stage

6

still used to resolve whenever robot is moving. When robot stays on one spot
all GPS messages are averaged for better precision.

Anytime joystick button 4 is pressed and internet connection is available the
robot’s trajectory and detected object are uploaded to the GFT.

For the case of robot failure files /tmp/cars.tmp and /tmp/tracetrory.tmp

are created. Using the googlemaps recovery cloud.py node content of these
files can be recovered and uploaded to the GFT.

In standard situations use the /launch/googlemaps.launch launchfile which
launches the localization 3d/launch/car detector and localization unfiltered.launch

launch file which detects cars and calculates their position in north-east coordi-
nates, runs the googlemaps cloud joy.py file and records following topics to a
bagfile[16]:

/viz/camera 0/image/compressed

/viz/camera 1/image/compressed

/viz/camera 2/image/compressed

/viz/camera 3/image/compressed

/viz/camera 4/image/compressed

/viz/camera 5/image/compressed

/joy

/func map/objects

/rosout

/odom

and all /mtig node nodes

This file can be freely edited.
To see an uploaded data go to the https://docs.google.com/ and log in with

the username ‘cturobot1@gmail.com’ and password ‘jednoducheheslo’. Open the
document with corresponding date and time of upload and click
Visualize → Map.

2.3.2 Technical documentation

Parameters can be configured in the source code in the function def init (self):

in class GoogleMapsClass: in googlemaps cloud joy.py. Mainly it is self.startLat
and self.startLon which describes robot’s starting position in GPS and self.LAT ACC

and self.LON ACC which defines a minimum position change (in degrees, LAT
means latitude, LON means longitude) between to points to be marked into the
map similar to kmlexport 2.2.2. This filtering is implemented for better visu-
alization performance, i.e. to avoid a large number of overlaying objects to be
visualized.

7

https://docs.google.com/

Altought Python is an interpreted language and thus not need compilation
this configuration method is wrong and in the next version will be replaced
using rosparam [17]. Parameters will be configured in launchfile and no editing
of the source code will be needed.

To lower the network load googlemaps uses cloud buffer hosted on
http://gmapscloudbuffer.appspot.com/. Here the trajectory gets its arrow style
which triples the number of points. Google account settings are defined in this
application so at this stage there is no way to change Google account. This will
be implemented in the future.

3 Evaluation and Results

3.1 kmlexport node

The following steps give an overview of how to execute and evaluate the
developed ROS nodes:

1. Run roscore. Roscore is the first thing you should run when using the
ROS. Open a terminal and type:
roscore

If successful confirmation that the process[master] and process[rosout-1]

has started will appear.

2. Roscd to kmlexport directory. Roscd sets the current path to the package
path.
roscd kmlexport

3. Run kmlexport.
rosrun kmlexport kmlexport

For every 10 positions that have pass through the move filtration (see
2.2.2 LON ACC and LAT ACC parameters) the KML file is generated and
node informs about it as in the Fig. 2.

Figure 2: ROS information output to the terminal while the kmlexport node is
running.

4. Open the link.kml file in Google Earth application. Result should look
similar to Fig. 3.

8

http://gmapscloudbuffer.appspot.com/

Figure 3: GPS trajectory as displayed in the Google Earth application [14] using
kmlexport.

3.2 Googlemaps node

As a part of this project a simple demo was implemented to demonstrate
the basic functionality of the googlemaps node. In the /demo directory there are
two files. A bagfile demo.bag which contains about 10 minutes long record of
robot’s trip at CTU and demo.launch. Launching the launchfile demo.launch

will replay this bagfile, launch googlemaps node and joystick node. Press the
joystick button 4 anytime to see the upload process. To see the simple demo:

1. Launch the /demo/demo.launch

roscd googlemaps

roslaunch demo/demo.launch

2. Press the joystick button 4 or terminate the program (e.g. Ctrl+C) to
initiate the upload process. Fig. 4 shows sample output of terminated
program by Ctrl+C.

3. Created table will appear in Google Docs [18]. In Fig. 5 is highlighted the
new document.

4. To see the map click to the Visualize button. Fig. 6 shows where is the
button located.

5. Map contains the robot trajectory and detected cars. Clicking on the Get
embeddable link button will show HTML tag as in Fig. 7. This can be
inserted anywhere on the web pages. Structure of the tag is logical and

9

Figure 4: Terminal output of just terminated googlemaps.

Figure 5: Google Docs [18] interface showing the newly generated fusion table.

Figure 6: Example of fusion table generated using googlemaps.

can be simply generated by any program or script. Table ID is obtained
during creation of table.

10

Figure 7: Visualization of the robot trajectory in Google maps.

4 Discussion

The actual implementation of both nodes has a flaw. The performance cur-
rently strongly depends on the GPS fix and predefined robot’s starting position.
GPS fix is in urban environments hard to obtain and maintain and manual in-
put of starting position is uncomfortable. If the fix is lost or there is a signal
outage, the recorded trajectory is not reliable. In buildings, tunnels and other
environments, where we expect most of the robot missions to be carried out, it is
usually impossible to get the GPS fix. To avoid dependency on known starting
position there is a possibility to buffer every odometry data and recalculate the
starting position after first GPS fix. But there will be still problem in case of
no GPS fix during whole experiment (e.g. indoor all time).

In the future, the position will be obtained using advanced estimation and
data fusion methods from INS, odometry, laser scanner and GPS. There is also
an ambition to compare actual robot camera images with downloaded images
from Google Street view (GSV) [19] and from its rotation and translation calcu-
late robot’s position. Nevertheless it should work only in environment mapped
in GSV.

The actual implementation processes only robot’s trajectory and detected
cars. Next step will be processing and online marking of various detected objects
to the map like victims and many more.

11

5 Conclusion

Two nodes for visualization of robot’s trajectory were created. They can be
found on the project SVN sites [12]. The first one is the kmlexport, which has
ability to show actual robot’s position, trajectory and other things in Google
Earth application right during the missions. The second one is the googlemaps,
which is intended to report and publish data on the internet at the end of the
mission or whenever the joystick button 4 is pressed (and when the internet
connection is available). The data published are stored in Google Documents
using the concept of fusion tables and can be shared this way (as any other
Google document). Also there is a possibility to add generated Google map to
any web page. Specific implementation then depends on the web sites and web
server services.

A headers

A.1 kmllogger.cpp

int main(int argc, char **argv)

creates /kml and /tmp directories, creates time based name of current KML file,
subscribes listening /mtig node/pos nav callbacks

void writeKml(double curLon,double curLat)

generate KML file from path.tmp and vectors.tmp file

void linkKML(char *name)

creates link.kml which links to currently created KML file

int writeArrow(double fromLon, double fromLat, double toLon, double

toLat)

draws an arrow between two points to vectors.tmp file

void callback(const sensor msgs::NavSatFix::ConstPtr& msg)

catches NavSatFix messages and if the position has changed greater LON ACC or
LON ACC than it calls writeArrow()

A.2 googlemaps.py

class Car:

an object car contains x, y, z coordinates, it’s unique id and boolean value if
it was uploaded

class GoogleMapsClass:

a class containing next function

12

def GPS callback(self,data):

a callback from /mtig node/pos nav2 topic

def GPS nextPosition(self,latitude,longitude,coordCount=1):

checks if position has changed enough to be saved as next point, optional pa-
rameter coordCount affects only info messages

def Odom callback(self,data):

a callback from /odom topic

def GPS average(self):

calculates the average GPS position from data cached during robot was not
moving

def joy callback(self,data):

a callback from /joy topic

def Car callback(self,data):

a callback from /func map/objects

if car detected, check if it is a new one and add it to the car list

def NE2GPSLat(self, x, y):

transforms north-easts (y, x) coordinates to latitude

def NE2GPSLon(self, x, y):

transforms north-easts (y, x) coordinates to longitude

def createTable(self):

creates new fusiontable and stores its ID to self.tableID

def upload(self):

uploads all catched data to the fusiontable

def finish(self):

uploads everything and closes backup files

References

[1] Robot Operating System. http://www.ros.org/wiki/ROS. Accessed:
16/01/2012.

[2] Willow Garage. http://www.willowgarage.com/pages/about-us/

overview. Accessed: 26/01/2012.

[3] Google I/O 2011: Cloud Robotics, ROS for Java and An-
droid. http://www.willowgarage.com/blog/2011/05/12/

13

http://www.ros.org/wiki/ROS
http://www.willowgarage.com/pages/about-us/overview
http://www.willowgarage.com/pages/about-us/overview
http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android
http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android

google-io-2011-cloud-robotics-ros-java-and-android. Accessed:
26/01/2012.

[4] Natural human-robot cooperation in dynamic environments. www.nifti.

eu. Accessed: 16/01/2012.

[5] Google Maps API Family. http://code.google.com/apis/maps/index.

html. Accessed: 27/01/2012.

[6] KML Reference. http://code.google.com/apis/kml/documentation/

kmlreference.html. Accessed: 27/01/2012.

[7] Open Geospatial Consortium, Inc. http://www.opengeospatial.org/

standards/kml. Accessed: 27/01/2012.

[8] Google Fusion Tables. http://www.google.com/fusiontables. Accessed:
16/01/2012.

[9] ROS node. http://www.ros.org/wiki/Nodes. Accessed: 27/01/2012.

[10] ROS topic. http://www.ros.org/wiki/Topics. Accessed: 27/01/2012.

[11] Google Latitude. http://googleblog.blogspot.com/2009/02/

see-where-your-friends-are-with-google.html. Accessed:
27/01/2012.

[12] NIFTi SVN. https://subversion.dfki.de/nifti/code/ros/stacks/

nifti_vision/trunk/googlemaps. Accessed: 19/11/2011.

[13] The new NIFTi robot platform. http://www.nifti.eu/news/

the-new-nifti-robot-platform. Accessed: 27/01/2012.

[14] Google Earth. http://www.google.com/earth/index.html. Accessed:
27/01/2012.

[15] Using KML for Geographic Data. https://developers.google.com/

fusiontables/docs/developers_guide#KML. Accessed: 27/01/2012.

[16] bagfile. http://ros.org/wiki/Bag. Accessed: 30/01/2012.

[17] rosparam. http://ros.org/wiki/rosparam. Accessed: 29/01/2012.

[18] Google Docs. https://docs.google.com/. Accessed: 27/01/2012.

[19] Google Street view. www.google.com/streetview. Accessed: 30/01/2012.

14

http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android
http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android
www.nifti.eu
www.nifti.eu
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/kml/documentation/kmlreference.html
http://code.google.com/apis/kml/documentation/kmlreference.html
http://www.opengeospatial.org/standards/kml
http://www.opengeospatial.org/standards/kml
http://www.google.com/fusiontables
http://www.ros.org/wiki/Nodes
http://www.ros.org/wiki/Topics
http://googleblog.blogspot.com/2009/02/see-where-your-friends-are-with-google.html
http://googleblog.blogspot.com/2009/02/see-where-your-friends-are-with-google.html
https://subversion.dfki.de/nifti/code/ros/stacks/nifti_vision/trunk/googlemaps
https://subversion.dfki.de/nifti/code/ros/stacks/nifti_vision/trunk/googlemaps
http://www.nifti.eu/news/the-new-nifti-robot-platform
http://www.nifti.eu/news/the-new-nifti-robot-platform
http://www.google.com/earth/index.html
https://developers.google.com/fusiontables/docs/developers_guide#KML
https://developers.google.com/fusiontables/docs/developers_guide#KML
http://ros.org/wiki/Bag
http://ros.org/wiki/rosparam
https://docs.google.com/
www.google.com/streetview

	Introduction
	Theory, Methodology and Resources
	Resources
	kmlexport node
	User documentation
	Technical documentation

	Googlemaps node
	User documentation
	Technical documentation

	Evaluation and Results
	kmlexport node
	Googlemaps node

	Discussion
	Conclusion
	headers
	kmllogger.cpp
	googlemaps.py

