
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

R
E
S
E
A
R
C
H
R
E
P
O
R
T

IS
S
N

1
2
1
3
-2
3
6
5

Summer internship report
(Version bleeding-edge)

Oliver Porges

oliver@amset.sk

CTU–CMP–0000–00

September 26, 2011

Available at

Supervisor: Ing. Michal Reinstein Ph.D.

The NIFTi project

Research Reports of CMP, Czech Technical University in Prague, No. 0, 0000

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Summer internship report

Oliver Porges

September 26, 2011

1

Contents

1 Robot Operating System - a brief description 4

2 Our Solution 4

2.1 Functions and classes . 4
2.2 Trigger node . 6

3 Configuration and usage 7

3.1 Example . 7
3.2 Output format . 8

3.2.1 Image format . 8
3.2.2 GPS frame . 8
3.2.3 Mechanization frame 8
3.2.4 Odometry frame . 8
3.2.5 Laser scan frame . 9
3.2.6 IMU frame . 9
3.2.7 Laser point-cloud frame 9

4 Other supporting information 10

4.1 System functionality . 10
4.2 Xsens unit . 11

5 Autonomous demo 12

6 Conclusion 13

7 Appendix - fully configured launch file for ctu data logger 13

7.1 3D scan launch tutorial . 14

2

Abstract

This work was done as a part of the Natural human-robot coop-
eration in dynamic environments (NIFTi) project [1]. Our main goal
was to create a data acquision module to ease the future research and
debugging. The module was implemented as a Robot Operating Sys-
tem (ROS [2]) package. We will cover the program’s structure, usage
and limits. We were also debugging other parts of the software and
hardware alongside to the main goal. All of the supporting informa-
tion is covered in section 4.1. Our attempt for autonomous demo is
covered in section 5

3

1 Robot Operating System - a brief descrip-

tion

Robot Operating System (ROS)[2] is a middleware environment created by
the Willow Garage [4]. The platform aims all mobile robotic systems, a mid-
dleware running on *NIX systems with a very clear modular architecture.
Every program running under ROS is a node (even ROS itself). Every data
connection between nodes is a topic. Topis have a particular data-type that
which has to be known to every node connected. A Publisher is the trans-
mitting node and a Subscriber is the receiving node. ROS brings a great
standarization of topic data types which is a first step necessary to build a
re-usable code. There is no hierarchy among topics which can cause problems
in high badwidth systems.

2 Our Solution

The very basic idea behind the package is to create a callback function for
every topic (data type) we want to save. There is also a possibility to over-
load the callback function to take in many different datatypes and create it
dynamically. Unfortunately we don’t save the data into a standarized format,
therefore, the open-source community would not benefit from it anyway.

The package (default name: ctu data logger) consists of two binaries,
data logger and trigger node. data logger subscibes to different topics and
listens to the sensor’s data. It is connected to the trigger node through
a log trigger topic. The trigger node publishes data on this topic when a
ciertain event occures. This enables the switches in the data logger which
then saves one data sample of every senosor enabled. All the configuration
is done using the ROS’s build-in parameter server.

2.1 Functions and classes

All of the program’s body is stored in the SharedObjects class. An in-
stance of this class is created in the main() function. The constructor
SharedObjects :: SharedObjects() initializes all the variabiles and creates
the connections to other nodes. It also reads in the parameters necesary for
the program to function properly. To read more about the configuration, see
section 3.
The data samples are handled through the callback functions. These func-
tions are called every time when a piece of data is published on a certain
topic.

4

• imageCallback()
This function receives an image from the camera node and stores it to
a parameter-defined file. A parameter log camera has to exist and has
to contain a valid path of a file where images should be stored. It has
to contain a %2d in the file name, to hold the sample numbering.

• imageXCallback()
These functions receive an image from a siangle camera (X is a number
from 0 to 5) node and store it to a parameter-defined file. A parameter
log cameraX has to exist and has to contain a valid path of a file where
images should be stored. It has to contain a sequence %2d in the file
name, to hold the sample numbering.

• rawCallback()
This function receives a raw image from the camera node and stores
it to a parameter-defined file. A parameter log raw has to exist and
has to contain a valid path of a file where images should be stored.
It has to contain a sequence %2d in the file name, to hold the sample
numbering.

• panoramaCallback()
This function receives a raw image from the camera node and stores
it to a parameter-defined file. A parameter log panorama has to exist
and has to contain a valid path of a file where images should be stored.
It has to contain a sequence %2d in the file name, to hold the sample
numbering.

• gpsCallback()
This function receives and saves the GPS data off the pos nav topic.
A parameter log gps has to exist and has to contain a valid path to log
file.

• LaserScannerCallback()
This function receives and saves the SICK rangefinder data off the scan
topic. A parameter log laser has to exist and has to contain a valid
path to log file.

• ImuCallback()
This function receives and saves the inertial Xsens MTi-G data off the
imu data topic. A parameter log imu has to exist and has to contain
a valid path to log file.

5

• EncodersCallback()
This function receives and saves the odometry data off a odom topic.
A parameter log odometry has to exist and has to contain a valid path
to log file.

• MechanizationCallback()
This function receives and saves the inertial Xsens MTi-G data off a
mechanization output topic. A parameter log mechanization has to
exist and has to contain a valid path to a log file.

• PclCallback()
This function receives and saves the point cloud data off a /nifti point cloud
topic. A parameter log pcl has to exist and has to contain a valid path
to a log file. It also has to contain the %2d string to place the sample
index there.

• TriggerCallback()
This function receives a trigger off the log trigger topic and sets the
switches. Once they are set the callback functions will be enabled and
will therefore save one sample off the enabled topics.

The switches mentioned earlier are binary values. One run of a particular
callback function is allowed when its switch is enabled. Every activity of the
node is logged through a separate function ToLogF ile(). The path of the
log file is taken from the parameter server log logfile. It will be saved in the
current working directory if activity − log is not set.

2.2 Trigger node

Another part of the package is the trigger node. This node publishes ”1”
on the log trigger topic when a given condition is fullfilled. So far it can
recognize two parameters off the parameter server. log distance parameter
is a floating point number expressed in meters. The node calculates Eu-
clidean distance using the odometry topic and triggers the data acquision
every log distance meters.

The joy trigger button specifies a manual triggering button on the joys-
tic. Since the indexes of the buttons start at 0 the button number three
would be indexed as 2. The triggering signal will be sent every time this but-
ton is pressed. It behaves independently from the distance trigger, therefore,
this trigger will not reset the distance calculation in the previous case.

6

3 Configuration and usage

User can easily run the package as,

rosrun ctu data logger data logger

To get help setting up the necessary paramterers you can run,

rosrun ctu data logger data logger -h

which displays all of the parameters used with a brief description. To run
the complementary triggering node run,

rosrun ctu data logger trigger node

If you are running the package using rosrun you also have to set the appro-
priate paramteters. For example

rosparam set log camera /home/robot/data/image%2d.png

However, it is recommended to use a launch fila. A complete launch file is in-
cluded with the package (launch/ctu data logger.launch). It can be launched
as,

roslaunch ctu data logger ctu data logger.launch

3.1 Example

It is recommended to use the provided launchfile, however, this example will
demonstrate a simple command-line usage. We would like to collect the
odometry and laser data every 1.5 meters. We run,

r o s c o r e &
rosparam se t t r i g \ d i s t anc e 1 .5
rosparam se t log odometry /home/ robot /odometry . dat
rosparam se t l o g l a s e r /home/ robot / l a s e r . dat
rosrun c tu da t a l o g g e r t r i g g e r nod e &
rosrun c tu da t a l o g g e r da t a l o gg e r &
ros launch n i f t i t e l e o p j o y n i f t i t e l e o p j o y . launch

7

If we would like to trigger the acquisition manually (by button number
4)and get the image from all of the cameras saved we would run,

r o s c o r e &
rosparam se t j o y t r i g g e r bu t t o n 3
rosparam se t log camera /home/ robot / image%3d . png
rosrun c tu da t a l o g g e r t r i g g e r nod e &
rosrun c tu da t a l o g g e r da t a l o gg e r &
ros launch n i f t i t e l e o p j o y n i f t i t e l e o p j o y . launch &
ros launch omnicamera omnicamera . launch

3.2 Output format

There is one or more values saved on every line of the output file in a text
mode. The structure of the frame repeats with every sample taken. The
meaning of the values is explained below. Please note that the data are sent
by other nodes, therefore, the units are not known to this node. You should
consult the documentation of a particular node for more information on the
value’s units.

3.2.1 Image format

All of the images are saved in PNG format. There is no other option at the
moment.

3.2.2 GPS frame

time stamp
latitude, longitude, altitude

3.2.3 Mechanization frame

time stamp
euler X, Y, Z
quaternion W, X, Y, Z
matrix 3 x 3

3.2.4 Odometry frame

time stamp
position X, Y, Z

8

Orientation X, Y, Z, W
Linear twist X, Y, Z
Angular twist X, Y, Z

3.2.5 Laser scan frame

time stamp
number of samples
minimum angle, maximum angle, angle increment, time increment, scan time,
minimal range, maximum range
ranges[]
intensities[]

3.2.6 IMU frame

time stamp
orientation X, Y, Z, W
angular velocity X, Y, Z
linear acceleration X, Y, Z

3.2.7 Laser point-cloud frame

time stamp
height, width
size of fields[]
all of the fields follow are stored on one line
{
name
offset
datatype
count
}
BIG or SMALL ENDIAN
point step, row step
invalid points indication
number of samples
samples[]

9

4 Other supporting information

4.1 System functionality

• All of the robot’s motion is controlled through a USB−CAN converter.
This communication is handled in the robot node and is not further
accessible to other parts of the system. There is and error message in
the case of engine failure but the node does not take care of it and
needs to be restarted.

• The robot can be controlled by rec-reating joystick messages and not
running the joy node.

• There are network dependent devices and the robot might become un-
operational if the networking settings are changed. Even a reboot might
not help. It is recommended to place such a crucial configuration into
an rc start-up file so the robot would always boot up to the same and
working conditions.

As of 13.9.2011 the network was configured manually as follows,
Robot(ctu-robot) - 192.168.2.2
Laptop(ctu-robot-laptop) - 192.168.2.1
Bullet-laptop(no DNS) - 192.168.2.50
Bullet-robot(no DNS) - 192.168.2.51

The laser rangefinder network interface has to be configured after each
boot up of the rover as,

sudo i f c o n f i g eth8 192 . 168 . 1 . 1 18

ROS, however, is working with the domain names. Therefore, we had
to set the domain names in /etc/hosts in order to be able to distribute
the system’s nodes.

• The GPS reception is weak and it can take up to 50 minutes for the
Xsens unit to get a FIX. Even when any mobile phone has a fix after
several minutes. The FIX time was measured at urban testing ground
- yard of the Czech Technical University at Karlovo Namesti. There
is also a version mismatch in the robot’s xsense mtig node and the
current manufacturer’s supporting libraries.

10

• If the driver for the xsense unit fails to initialze it can put the unit
into an unusable mode. The settings are stored in the device, read
back during the configuration procedure (by the mtig node, MTig.cpp)
and then fed back to the unit. The driver should always set the highest
possible sampling frequency without any concern about the unit-stored
values (120 Hz). No values shuld be read from the device and configured
back - it leads to unit malfunction and will never resurrect without a
change in the code.

• There is a possibility of data loss (dropping messages) if too much
traffic is generated on the ROS message system. This can lead to a
significant error in odometry or any other time dependent processing.
This could be solved by using a real-time subsystem for time critical
operations such as odometry and inertial positioning system. Some
buffer sizes should be reconsidered. There is a 50 frames buffer for
camera images which is unsutable for teleoperation. On the other side,
odometry buffer size should be increased as much as possible.

4.2 Xsens unit

The Xsens unit is a complicated and badly documented hardware. There are
Linux libraries available from the manufacturer, however, they are a part of
the Software Developement Kit which needs to be registered before usage.
It might take some time to obtain them. These libraries implement the low
level communication protocol as well as the higher level functions. The unit
has two basic modes - configuration and measurement. The configuration
part is crucial to its consequent successful operation. Output modes have to
be set properly to obtain correct data if any. Line 129 in MTig.cpp sets the
proper output modes which are,

CMT OUTPUTMODE ORIENT
CMT OUTPUTMODE POSITION
CMT OUTPUTMODE CALIB
CMT OUTPUTM
ODE VELOCITY
CMT OUTPUTMODE TEMP
CMT OUTPUTMODE STATUS

Another issue is the operation of the INS node (created at Czech Techni-
cal University as well). It requires the mtig node to output its orientation in
Euler angles. This is set on line 134 by,

11

settings = CMT OUTPUTSETTINGS ORIENTMODE EULER;

5 Autonomous demo

We had the idea of autonomous mapping of the surrounding environment.
We have managed to connect our sensors with a Simultanious localization
and mapping (SLAM) [6] module. The resulting map is saved using the oc-
cupancy grid of SALM output.

Figure 1: Map of a corridor in creation

We transform this map into a distance map every time a new occupancy
grid is published.

Figure 2: Distance map combined with the walls

Then we search for a nearest point of interest in the distance map (the
heighest intensity pixel in a given radius). Compared with the trajectory

12

Figure 3: A resulting map and it’s corresponding points of interest

already taken we get our next waypoint. This way would be able to au-
tonomously create a map of the environment. With a small extension using
octomap module we could extend this method to a third dimension. Allto-
gether with the camera data we would have a very basic and powerful tool
for environment mapping and navigation.

6 Conclusion

We successfully created, tested and documented the data acquision module
for the bleeding-edge version of the NIFTi project. We have managed to run
the robot and dynamically switch it’s nodes between machines connected to
the netwrok. Demo of the autnomous mapping is not finished. The source
code is saved in the /home/robot/workspace/demo directory.

7 Appendix - fully configured launch file for

ctu data logger

<launch>

<!−− data a c qu i s i t i o n con f i gu r a t i on −−>

<param name=”log camera ” value=”/home/ robot / c t u l o g g e r / image%2d . png” />
<param name=” l o g l a s e r ” value=”/home/ robot / c t u l o g g e r / l a s e r ”/>
<param name=”log camera0 ” value=”/home/ robot / c t u l o g g e r /cam0%2d . png”/>
<param name=”log camera1 ” value=”/home/ robot / c t u l o g g e r /cam1%2d . png” />
<param name=”log camera2 ” value=”/home/ robot / c t u l o g g e r /cam2%2d . png” />
<param name=”log camera3 ” value=”/home/ robot / c t u l o g g e r /cam3%2d . png” />
<param name=”log camera4 ” value=”/home/ robot / c t u l o g g e r /cam4%2d . png” />
<param name=”log camera5 ” value=”/home/ robot / c t u l o g g e r /cam5%2d . png” />
<param name=”log raw ” value=”/home/ robot / c t u l o g g e r /raw%2d . png” />
<param name=”log gps ” value=”/home/ robot / c t u l o g g e r /gps” />
<param name=”log panorama” value=”/home/ robot / c t u l o g g e r /panorama%2d . png” />
<param name=”log imu” value=”/home/ robot / c t u l o g g e r /imu” />
<param name=” l o g i r c ” value=”/home/ robot / c t u l o g g e r / i r c ” />
<param name=”log mechan izat ion ” value=”/home/ robot / c t u l o g g e r /mechanizat ion ” />
<param name=” l o g p c l ” value=”/home/ robot / c t u l o g g e r /PCL” />

<!−− Trigger c on f i gu r a t i on −−>

<param name=”t r i g d i s t a n c e ” value=”1” />
<param name=”j o y t r i g g e r bu t t on ” value=”2”/>

13

<!−− data a c qu i s i t i o n modules −−>

<node pkg=”c tu da t a l o gg e r ” name=”da ta l ogge r ” type=”data l ogge r”>
</node>

<node pkg=”c tu da t a l o gg e r ” name=”t r i g g e r node ” type=”t r i g g e r node”>
</node>

<!−− other robot nodes −−>

<node pkg=”joy ” type=”joy node ” name=”joy node ” >

<param name=”dev” value=”/dev/ input /by−id /
usb−Logitech Logitech Cordless RumblePad 2−j o y s t i c k ” />
<param name=”auto r epea t r a t e ” value =”10.0” />
</node>

<param name=”/CAN device” value=”/dev/usb/ cpc usb0 ” />
<node pkg=”n i f t i r o b o t d r i v e r ” type=”n i f t i r o b o t n od e ”
name=”n i f t i r o b o t n od e ” output=”sc r een ” />

<node pkg=”t o p i c t o o l s ” type=”mux” name=”mux cmd vel”
args=”/cmd vel / n i f t i t e l e o p j o y / cmd vel ” />

<node pkg=”n i f t i t e l e o p ” type=”n i f t i t e l e o p j o y . py”
name=”n i f t i t e l e o p j o y ” output=”sc r een”>
<param name=”cmd ve l top i c ” value=”/ n i f t i t e l e o p j o y / cmd vel ” />
<param name=”cmd vel mux topic ” value=”/nav/ cmd vel ” />
</node>

<node pkg=”LMS1xx” type=”LMS100” name=”LMS100”>
<param name=”host ” value =”192.168.1.72”/>

</node>

<node name=”insnd ” pkg=”in s ” type=”in s ”
args=”−c f /home/ robot /workspace/ in s /mechan i za t i on con f i g
−o /home/ robot /workspace/ i n s /Output −y −a f avg − i l ”/>

<node name=”omnicamera” pkg=”omnicamera”
type=”omnicamera” respawn=” f a l s e ” output=”sc r een ” />

<node name=”img2pano” pkg=”omnicamera” type=”img2pano lut ”
args=”−m 7− ih 616 −iw 808 −ph 480 −pw 960 −r 20
−path $ (f i nd omnicamera)/ r e s / l u t ” respawn=” f a l s e ” output=”sc r een”>
<remap from=”v i z / image out ” to=”v i z /omni” />
<param name=”image t ranspor t ” value=”raw” type=”s t r i n g ” />
</node>

</launch>

7.1 3D scan launch tutorial

1. Turn on the robot

2. Set up the network interface for the laser scanner
sudo ifconfig eth8 192.168.1.118

3. Run the basic scanning module e.g.
roslaunch nifti teleop nifti teleop joy.launch

4. Turn on the 3D point cloud node
roslaunch nifti laser assembler nifti laser assembler.launch

5. Make the laser head rotate (joystick button 3 + horizontal cross but-
tons)

6. Launch the ctu data logger module with the desired parameters speci-
fied

14

The laser assembler node sends out a point cloud on each turn of the
laser. You might want to check if the laser is working properly. This can be
done by checking the messages of /scan and /nifti point cloud. For example
run

rostopic hz /nifti point cloud

References

[1] The nifti project (26. September, 2011) www.nifti.eu

[2] Robot Operating System (26. September, 2011) www.ros.org

[3] OpenCV (26. September, 2011) www.opencv.willowgarage.org

[4] The Willow Garage (26. September, 2011) www.willowgarage.com

[5] Xsens unit SDK (26. September, 2011) www.xsens.com/en/mt-sdk

[6] SLAM (26. September, 2011)
wikipedia.org/wiki/Simultaneous localization and mapping

15

	Robot Operating System - a brief description
	Our Solution
	Functions and classes
	Trigger node

	Configuration and usage
	Example
	Output format
	Image format
	GPS frame
	Mechanization frame
	Odometry frame
	Laser scan frame
	IMU frame
	Laser point-cloud frame

	Other supporting information
	System functionality
	Xsens unit

	Autonomous demo
	Conclusion
	Appendix - fully configured launch file for ctu_data_logger
	3D scan launch tutorial

