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Abstract—This paper proposes a novel approach to 

improving precision and reliability of odometry of skid-steer 

mobile robots by means inspired by robotic terrain 

classification (RTC). In contrary to standard RTC approaches 

we do not provide human labeled discrete terrain categories 

but we classify the terrain directly by the values of coefficients 

correcting the robot’s odometry. Hence these coefficients make 

the odometry model adaptable to the terrain type due to 

inherent slip compensation. Estimation of these correction 

coefficients is based on feature extraction from the vibration 

data measured by an inertial measurement unit and regression 

function trained offline. Statistical features from the time 

domain, frequency domain, and wavelet features were explored 

and the best were automatically selected. To provide ground 

truth trajectory for the purpose of offline training a portable 

overhead camera tracking system was developed. Experimental 

evaluation on rough outdoor terrain proved 67.9±7.5% 

improvement in RMSE in position with respect to a state of the 

art odometry model. Moreover, our proposed approach is 

straightforward, easy for online implementation, and low on 

computational demands. 

I. INTRODUCTION 

The ability of an autonomous mobile robot to traverse a 
complex and structured real world terrain is given by the 
means how much precise and reliable position and orientation 
information the robot has. Hence, improving the precision 
and reliability of navigation and localization algorithms is 
today still a relevant topic, especially in the field of mobile 
skid-steer robots performing outdoor missions. There are 
many different approaches to navigation and localization and 
their nature as well as performance is mostly determined by 
the sensor suit the robot is equipped with. Among the most 
common we can find approaches exploiting the inertial 
sensors (three accelerometers and three angular rate sensors 
mounted as an inertial measurement unit - IMU) [1] [2] [3] 
[4] [5] [6] [7], monocular [8] or stereo-camera [9] to compute 
visual odometry, laser scanners to provide range data [10] 
[11], barometer for height correction [12], and wheel 
odometry exploiting robot morphology conforming to uneven 
terrain [13]. Concerning the area of skid-steer robots it is 
actually the odometry that is most commonly exploited. With 
the research aiming primarily on slip estimation [2] [14] [4] 
[3], odometry proves to be crucial especially for rough terrain 
outdoor navigation. Therefore, we claim that by providing a 
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more precise and reliable odometry we can actually aid all 
these different approaches. Hence, seeking this improvement 
was our main motivation. Figure 1 shows the robotic 
platform used for outdoor experimental evaluation. 

 
Figure 1.  The mobile robot developed for the NIFTi (www.nifti.eu) project; 

hardware design by BlueBotics (www.bluebotics.com), sensors equipped: 

Point Grey Ladybug 3 camera, rotating 2D laser scanner SICK LMS-151, 

Xsens MTi-G unit 

It is generally well known that odometry of skid-steer 
robots is strongly affected by the environment especially by 
the terrain type. Complex structured, rough, or slippery 
terrain can cause the odometry to drift due to accumulation of 
uncompensated error or fail completely, when the speed of 
tracks or wheels ceases to correspond to the body velocity. 
As argued in [15], this can be solved by robotic terrain 
classification (RTC) that has become an increasingly active 
field of research in the last years [15]. Hand in hand with 
RTC goes the research into adaptive navigation realized 
either by means of changing the robot’s morphology [16] or 
by selecting proper navigation strategy based on 
traversability analysis [17]. There has been lots of effort 
invested into the RTC methods lately [18], aiming mainly on 
identifying the terrain type and thus allowing a mobile robot 
to avoid dangerous regions or choose among suitable control 
modes. This leads to terrain dependent control as described in 
[18] where the reaction-base terrain classification subjected 
to the problem of speed and load dependency [18] [19] is 
addressed and solution via Singular Value Decomposition 
Interpolation is presented. As proposed in [15], identifying 
the terrain can also aid in localization and mapping by 
adjusting the location estimator based on characteristics of 
the identified terrain. Various approaches to the RTC 
problem also include support vector machines [20] [21], 
physical probabilistic models [22], neural networks [18] [23] 
[24], linear discriminant analysis [25] [26], principal 
component analysis [27] [28], or adptive bayesian filtering 
[29]. Many approaches exploit both the vision and vibration 
measurements [30] [27], however these combined approaches 
tend to be rather computationally demanding. 
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Vast majority of these terrain classification approaches 
aimes on correct labeling of the identified terrain types in the 
manner as perceived by humans. On the contrary, we claim 
that rather than labeling the terrain categories by human 
means it is more important to find representation that can be 
directly exploited by the robot, i.e. find terrain type 
representation by means essential for the robot. Sometimes, 
the same terrain type behaves differently under various 
circumstances (such as pebbles on flat terrain and pebbles on 
steep or uneven terrain) as well as different terrains can 
influence robot’s odometry in a very similar way. In this way 
we diverge from the RTC concept since we do not appoint 
discrete labels to different terrain types. Our solution is based 
on the concept of sensing through body dynamic as described 
in [31] and successfully applied in our previous work 
concerning odometry for legged robots [32]. Although the 
skid-steer robot’s morphology is completely different from 
the quadruped robot, the inertial sensors capture the body 
dynamics and its interaction with the environment in the 
same way. Therefore, we have modified a state of the art 
odometry model described in [3] and extended this model by 
additional two parameters–the correction coefficients. One of 
the coefficients is obtained by offline calibration and remains 
constant. The second is estimated using regression function 
trained on features computed on the vibration data measured 
by an IMU and changes adaptively to the terrain type. Feature 
selection was performed on a large and rich set of statistical 
time domain features, frequency domain features, and 
wavelet based features. When viewed from the RTC point of 
view, ranges of correction coefficients in fact correspond to 
terrain types that have very similar properties influencing the 
body dynamics. In this way, if the training data cover a 
sufficiently rich set of terrains, the slip is successfully 
compensated and precision of odometry improves.  

Our main contribution lies in improving the traditional 
approach to odometry for skid-steer robots by proposing a 
RTC inspired machine learning method for estimating 
corrections. These corrections increase the precision of 
odometry even on rough outdoor terrain while the algorithm 
for computing the corrections is fast and easy to implement. 
However, offline training is required. We have trained and 
tested our approach on a set of 26 navigation experiments in 
total length 1762 m distance driven over 2.4 hours on rough 
outdoor terrain. For the evaluation we have taken a cross-
validation approach where for each iteration the training 
dataset consisted of 20 randomly selected experiments 
leaving 6 experiments for testing. Precise reference trajectory 
was obtained using portable overhead camera and tracking 
system designed for this purpose. We have included our 
terrain adaptive odometry as one of the inputs to the 
navigation system of our robot and implemented it in the 
Robot Operating System (ROS). This navigation system is 
based on our previous work on complementary filter for 
orientation estimation using inertial sensors only [33] and 
provides full 3D position, velocity, and orientation. 

The structure of this paper is as follows. Section II covers 
description of the proposed odometry model as well as 
methodology for feature extraction and training of the 
regression function. Section III provides details regarding the 
mobile robot and description of experiments. Section IV 
gives an overview of implications of our work. 

II. THEORY AND METHODOLOGY 

A. Enhanced Odometry Model with Correction Coefficients 

Our approach is based on a track slip compensating 
odometry proposed by Endo [3] and modified by Nagatani 
[34]. The geometry of the odometry is depicted in Figure 2. 

 
Figure 2.  Geometry of the original odometry as proposed in [3] and 

modified in [34]. The different track velocities (measured vl,vr; absolute 

vl',vr') cause the robot to follow a circular path around its Center of Rotation 

(CoR) with a tangential velocity V and to spin around its z axis (pointing 

upwards) with angular rate Ω and heading θ (after [34], Figure 2) 

The track slip compensating odometry differential 
equations describing the coordinates are: 
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where vl and vr are the left and right track velocities measured 
by internal sensors, 2d is the distance between the tracks, θ is 

heading such that    ̇, and ar, al are slip ratios defined as: 
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where vl´ and vr´ are the true velocities of the track gears 
moving through the coordinate frame. To determine ar, al 
uniquely following equation can be used [34]: 
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Combined with (1c), the slip ratios can be determined 

uniquely since    ̇ can be measured directly using the 
vertical axis angular rate sensor. 

Our approach updates θ using angular rate sensor 
measurements, which are corrected for bias and scale errors 
(4). The bias is determined during an initial calibration 
sequence; the scale factor is determined experimentally as an 
optimal parameter minimizing the localization error over a 
set of training experiments in a least squares sense. 
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respectively. To update the x and y coordinates, the ar, al slip 
ratios are evaluated and substituted into (1a) and (1b). The 
position increments in these coordinates are subsequently 
multiplied by the correction coefficient C estimated using 
trained regression function: 

      
    

 ̇     ̇ 

 
   (5a)

      
    

 ̇     ̇ 

 
   (5b)

where      
  and      

  stand for increments in position 
between discrete time steps k and k-1,  ̇ and  ̇ are results of 
(1a,b) at the appropriate discrete time steps, and    is the 
sampling period.  

These corrected position increments are then used to update 
the current position. Note that the correction coefficient 
changes only norm of the increment, not direction. Direction 
is believed to be accurate enough due to the angular rate 
measurement and scale factor calibration. Figure 3 
demonstrates the correction coefficient C and the angular rate 
calibration effects on a trajectory. 

 
Figure 3.  The ground truth path (blue dashed) and the odometry output (red 

solid). The goal of our approach is to diminish differences between position 

x, y and angle θ increments.  

B. Regression Function Training 

To estimate the correction coefficient as defined in (5a,b), 
we have chosen a straightforward yet sufficient approach of 
training a linear regression function  (   ), which processes 
features obtained from inertial data (three accelerations and 
three angular rates at 90 Hz) and outputs the correction 
coefficient directly. It is given as follows: 

 (   )  ∑     
 
            (6) 

where n is the number of features,    is feature value,    is 
corresponding parameter of the regression function,      is 
the intercept term.  

Training of the regression function was performed using 
normal equations corresponding to minimization of the 
following cost function  ( ) in a least squares sense: 
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where m is the number of training examples,    is the 
correction coefficient obtained from the ground truth 

trajectory reference for the     training example.  

The ground truth correction coefficients    were 
computed by offline local optimization in such a way to 
ensure that the trajectory obtained using the proposed model 

parameterized by these     coefficients coincides with the 
reference. 

C. Feature Extraction and Selection 

Inspired by the feature pools used and analyzed in [15] 
[18] [20] we have decided to perform feature selection on the 
following features:  

 features from the time defined as various statistical 
moments and indicators such as min, max, mean, 
median, norm, skewness, kurtosis, and number of 
sign changes over a threshold given by 0.25, 0.5, 
0.75 multiples of mean and median, 

 features from the frequency domain computed using 
FFT and taking into account the magnitudes and 
frequencies of first three most significant harmonics, 

 features defined as correlation coefficient between 
the signal samples and more than a hundred of Haar 
wavelets generated with the corresponding length. 

The feature selection was performed offline as part of the 
regression function training. We selected a set of suitable 
features from the generated feature pool by a forward stage-
wise feature selection strategy [35] based on Gram-Schmidt 
orthogonalization process. More formally, we are given a 

training set {             } consisting of K training 

samples, where          are N-dimensional vectors 

containing values of features from the feature pool, and    
are ground truth values of corresponding correction 

coefficients. Especially, we denote   
  as the j-th feature of 

the k-th sample. 

The proposed algorithm successively builds the feature set 

from the features minimizing the residuals     of all training 
samples      . Initially we set residual of the k-th 

training sample to       . In each training stage h, the 
algorithm estimates coefficients for all features       
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We choose the feature with index           ( ), which 

minimize square error 
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Eventually, we set coefficient of the feature selected in stage 

h to       and update residuals             
 . The 

algorithm continues while the validation error is decreasing 
or a given number of features to be selected have been 
reached. 

III. EVALUATION AND RESULTS 

A. Robotic Platform Description 

Our experimental platform used for verification is a skid-
steer robot (see Figure 1) designed for urban search and 
rescue operations and developed as part of a project aiming at 
human-robot cooperation in dynamic environments. For 
purpose of our experiments we used the Xsens MTi-G unit 
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providing calibrated and temperature compensated inertial 
data at 90 Hz in range of ±300 deg/s and ±50 m/s^2 for 
angular rates and accelerations respectively, and motor 
encoders providing left and right track velocities at 20 Hz. 
We have collected datasets on various outdoor terrains 
(paving, asphalt, concrete, stones, pebbles, sand, dust, soil, 
and grass) to test the limits under natural conditions. The 
robot was teleoperated during these experiments and tracked 
using overhead camera and video tracking system we have 
developed for this purpose. We tracked the robot’s position 
and heading in time by exploiting two distinct markers as 
shown in Figure 4 (left). Then we projected the tracked 
trajectory into the metric plane of motion determined as part 
of the calibration of the tracking system. This way we were 
able to obtain a sufficiently precise 2D referential trajectory. 
The position accuracy of the reference was determined 
experimentally to be 15 ± 12 cm within the 15 m × 10 m 
area; example is shown in Figure 4 (right). For data collection 
and testing, different areas were used. 

 

Figure 4.  The mobile robotic platform equipped with colored markers for 

position and heading tracking (left); example of one of the testing areas as 

processed by the tracking algorithm (right). 

B. Evaluation and Testing 

We have performed a number of experiments to test and 
evaluate our approach. First, we determined the optimal 
number of inertial data samples to be used for computing the 
features. We iterated over the validation dataset for different 
numbers of samples in range of 10 to 400 and observed the 
error on the training dataset. This way the optimal number of 
samples was determined to be 98. For the real-time online 
implementation this means: each time a new odometry 
measurement comes at 20Hz, from that time step the 98 last 
samples of the 6 inertial signals (sampled at 90 Hz) are 
processed to compute the features. 

Second, another series of experiments was carried out to 
determine the optimal number of features to be selected 
during the proposed feature selection procedure. Again, we 
iterated over the whole validation dataset and for different 
numbers of features in range 1 to 100 we assessed the RMSE 
precision of the corrected trajectory with respect to reference 
and the possible computational load for online computation 
of the features. This proved that using only the best 20 
features is fully sufficient. Among the top 20 features, which 
contributed the most to decreasing of the validation error 
during the feature selection procedure, most of them were 
from the group of statistical time domain features. These 
features proved to be the best for capturing information about 
changes in motion dynamics corresponding to disturbances to 
the proposed odometry model caused by the nature of terrain. 

Third, to field-test our algorithm and evaluate the desired 
improvement in precision of navigation, we compared the 
development of RMSE in time of our approach (with respect 

to the ground truth trajectory) to the RMSE development of 
the trajectory obtained using the original odometry model [3]. 
To avoid being biased by the choice of the training and 
testing datasets, we performed a thorough cross-validation of 
more than 1000 iterations over all of the navigation 
experiments. For each cross-validation check we have 
randomly selected 20 trajectories for training the regression 
function and the remaining 6 trajectories were used for 
testing, i.e. evaluation of the RMSE in time with respect to 
the reference. To visualize our results, we have selected two 
typical samples of navigation trajectories. One represents a 
short trajectory (chosen for convenience of plotting); see 
Figure 5 showing the correction coefficients evaluated on 
testing dataset corresponding to trajectory shown in Figure 6. 
Second trajectory represents a longer and more dynamic 
experiment; see Figure 7. Both navigation experiments were 
taken on a rough outdoor terrain consisting of combination of 
concrete with sand, soil, grass, and stones.  

 

Figure 5.  Example of evaluation of the trained regression function on a 

testing dataset–navigation experiment described in Figure 6): ground truth 

coefficients as obtained from the reference (blue), coefficients computed on 

the testing data (red). Red arrows point to uncompensated corrections–

outlying cases not covered by the training data; green arrows point 

approximately to the regions of correction coefficients = 1 meaning almost 

no corrections were necessary. 

As shown in Figure 5, the regression function was capable of 
estimating reliable correction coefficients for vast majority of 
the samples. However, as highlighted by the red arrows, in 
few outlying cases, the correction was underestimated. This 
was very probably caused by the diverse nature of the 
outdoor terrain, which was not fully covered in the training 
dataset. Although we can never possibly capture such training 
dataset to cover a complete response of the robot’s body 
dynamics to the terrain, we show that even when trained on 
ground of different properties, our approach provides desired 
results. As also shown in Figure 5 and highlighted by green 
arrows, there were samples for which the correction 
coefficients became close to 1, meaning only very small 
correction was necessary, and the regression function did 
respect this correctly. 
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Figure 6.  Example of short trajectory  navigation experiment: comparison 

of performance of the original odometry model as described in [3] and our 

approach (left) with respect to the reference; development of RMSE in 

position in time for original odometry model and corrected model (right). 

 

Figure 7.  Example of long trajectory navigation experiment: comparison of 

performance of the original odometry model as described in [3] and our 

approach (left) with respect to the reference; development of RMSE in 

position in time for original odometry model and corrected model (right). 

Figure 6 (right) and Figure 7 (right) show how the RMSE in 
position grows in time for both the original odometry model 
[3] and our model with terrain adaptive corrections. Although 
the improvement is as desired, it is important to note that the 
odometry is still dead reckoning navigation and hence the 
error grows inevitably with the distance driven. To conclude, 
for the evaluation we have gathered more than 2.4 hours of 
data and driven more than 1762 m. The overall average 
improvement in precision of navigation over all of the 26 
cross-validated experiments was 67.9 ± 7.5% of the RMSE 
with respect to the original odometry model proposed in [3]. 

IV. CONCLUSION 

Motivated by the successful development in the field of 
RTC during last years and the work done on improving 
odometry models for skid-steer robots, we propose a 
modification of the state of the art odometry model described 
in [3] making it adaptable to the terrain. We propose such a 
parameterization of the odometer model that one constant 
parameter modifies the vertical gyro scale factor (identified 
by experimental calibration) and the second parameter 
changes adaptively with the terrain the robot is driving over. 
We show this can be achieved in a straightforward and easy 
to implement way by computing features on six inertial 
signals obtained from an IMU at sufficiently high rate. These 
features then enter a regression function trained to directly 
output the adaptive correction coefficient. We have proven 
that just by using 20 best features computed over 98 samples 
of inertial data the average improvement of 67.9 ± 7.5% was 
achieved in the RMSE in position with respect the original 
uncorrected model [3]. To avoid being biased by the choice 
of the testing and training datasets we performed a thorough 
cross-validation. 

We are fully aware that due to rather large diversity of 
properties of different terrain types the performance of our 
approach will always depend upon the actual choice of the 
training dataset as well as on the dynamics of motion. 
Training the regression function indoor will not improve 
much the outdoor performance as well as driving at 
completely different speeds during training and testing. On 
the other hand, when trained on indoor data, improvement in 
precision of indoor navigation will be even more significant 
since the response of body dynamics to the indoor terrain is 
much more consistent and the correction coefficients will be 
estimated more precisely. 

We assume this work can easily be extended by 
processing images from robot’s omnicamera by means of 
segmenting visually consistent ground regions and assigning 
to them ranges of the correction coefficients. Since the robot 
can create a map using the laser scanner the information 
about how each terrain type influences the precision of the 
odometry model can be directly projected to this map leading 
to a more convenient trajectory planning. 
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