Algorithmic Game Theory

Computing Stackelberg Equilibrium

Branislav Bošanský

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,
Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

April 23, 2018
Players have different roles in the Stackelberg solution concept:

- *the leader* – publicly commits to a strategy
- *the follower(s)* – play a Nash equilibrium with respect to the commitment of the leader

Stackelberg equilibrium is a strategy profile that satisfies the above conditions and maximizes the expected utility value of the leader:

$$\arg \max_{\sigma \in \Sigma; \forall i \in N \setminus \{1\}, \sigma_i \in BR_i(\sigma_{-i})} u_1(\sigma)$$
There may be multiple Nash equilibria

The followers need to break ties in case there are multiple NE:

- arbitrary but fixed tie breaking rule
- **Strong SE** – the followers select such NE that maximizes the outcome of the leader (when the tie-breaking is not specified we mean SSE),
- **Weak SE** – the followers select such NE that minimizes the outcome of the leader.

Exact Weak Stackelberg equilibrium does not have to exist.

<table>
<thead>
<tr>
<th></th>
<th>1 \ 2</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(2, 4)</td>
<td>(6, 4)</td>
<td>(9, 0)</td>
<td>(1, 2)</td>
<td>(7, 4)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(8, 4)</td>
<td>(0, 4)</td>
<td>(3, 6)</td>
<td>(1, 5)</td>
<td>(0, 0)</td>
<td></td>
</tr>
</tbody>
</table>
There may be multiple Nash equilibria

\[\text{payoff to player 2} \]

\[\text{payoff to player 1} \]

\[\text{Figure from [8].} \]
The problem is polynomial for two-players normal-form games; 1 is the leader, 2 is the follower.

Baseline polynomial algorithm requires solving $|S_2|$ linear programs:

$$\max_{\sigma_1 \in \Sigma_1} \sum_{s_1 \in S_1} \sigma_1(s_1)u_1(s_1, s_2)$$

$$\sum_{s_1 \in S_1} \sigma_1(s_1)u_2(s_1, s_2) \geq \sum_{s_1 \in S_1} \sigma_1(s_1)u_2(s_1, s_2') \quad \forall s_2' \in S_2$$

$$\sum_{s_1 \in S_1} \sigma_1(s_1) = 1$$

one for each $s_2 \in S_2$ assuming s_2 is the best response of the follower.
We can reformulate the program as a mixed-integer linear program (MILP) that is a basis for the hard cases (e.g., computing a SE in Bayesian games):

\[
\max_{\sigma \in \Sigma, y \in \{0,1\}} \sum_{s \in S} \sigma(s_1, s_2) u_1(s_1, s_2)
\]

\[
0 \leq \sigma(s_1, s_2) \leq y(s_2) \quad \forall s_1, s_2 \in S_{1,2}
\]

\[
\sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2) u_2(s_1, s_2) \geq \sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2) u_2(s_1, s'_2) \quad \forall s'_2 \in S_2
\]

\[
\sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2) = 1
\]

\[
\sum_{s_2 \in S_2} y(s_2) = 1
\]
Computing a Stackelberg equilibrium in EFGs

The problem is typically NP-hard [5, 2]:

- two-player EFGs with chance (there exists a FPTAS for this case [2]),
- two-player EFGs with imperfect information,
- two-player EFGs with perfect information but imperfect recall (games on DAGs).

Main algorithms are based on the sequence-form LCP for computing NE:

\[v_{\text{inf}}(\sigma_i) = s_{\sigma_i} + \sum_{I'_i \in \mathcal{I}_i : \text{seq}_i(I'_i) = \sigma_i} v_{I'_i} + \sum_{\sigma_{-i} \in \Sigma_{-i}} g_i(\sigma_i, \sigma_{-i}) \cdot r_{-i}(\sigma_{-i}) \quad \forall i, \sigma_i \]

\[r_i(\sigma_i) = \sum_{a \in A(I_i)} r_i(\sigma_i a) \quad \forall i \in \mathcal{N} \forall I_i \in \mathcal{I}_i, \sigma_i = \text{seq}_i(I_i) \]

\[r_i(\emptyset) = 1 \quad 0 = r_i(\sigma_i) \cdot s_{\sigma_i} \quad \forall i \in \mathcal{N} \forall \sigma_i \in \Sigma_i \]

\[0 \leq r_i(\sigma_i) ; \quad 0 \leq s_{\sigma_i} \quad \forall i \in \mathcal{N} \forall \sigma_i \in \Sigma_i \]
Computing a Stackelberg equilibrium in EFGs

MILP for computing SE for two-player extensive-form game with perfect recall:

$$\max_{p,r,v,s} \sum_{z \in Z} p(z) u_1(z) C(z)$$

$$v_{inf 2}(\sigma_2) = s_{\sigma_2} + \sum_{I' \in \mathcal{I}_2 : \text{seq}_2(I') = \sigma_2} v_{I'} + \sum_{\sigma_1 \in \Sigma_1} r_1(\sigma_1) g_2(\sigma_1, \sigma_2) \quad \forall \sigma_2 \in \Sigma_2$$

$$r_i(\emptyset) = 1 \quad r_i(\sigma_i) = \sum_{a \in A_i(I_i)} r_i(\sigma_i a) \quad \forall i \in \mathcal{N} \quad \forall I_i \in \mathcal{I}_i, \sigma_i = \text{seq}_i(I_i)$$

$$0 \leq s_{\sigma_2} \leq (1 - r_2(\sigma_2)) \cdot M \quad \forall \sigma_2 \in \Sigma_2$$

$$0 \leq p(z) \leq r_2(\text{seq}_2(z)) \quad \forall z \in Z$$

$$0 \leq p(z) \leq r_1(\text{seq}_1(z)) \quad \forall z \in Z$$

$$1 = \sum_{z \in Z} p(z) C(z)$$

$$r_2(\sigma_2) \in \{0, 1\} \quad \forall \sigma_2 \in \Sigma_2$$

$$0 \leq r_1(\sigma_1) \leq 1 \quad \forall \sigma_1 \in \Sigma_1$$
Recall the MILP program Stackelberg equilibrium and compare it to the LP for correlated equilibrium:

- we maximize the expected utility of the leader
- we restrict the joint probability distribution so that the follower plays a pure strategy
- there are no incentive constraints of the leader

We can compute a Stackelberg equilibrium if we modify an algorithm for computing an optimal correlated equilibrium.
Computing a Stackelberg equilibrium in NFGs (2)

We can reformulate the MILP program as a single LP:

\[
\max_{\sigma \in \Sigma} \sum_{s \in S} \sigma(s_1, s_2)u_1(s_1, s_2) \\
\sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2)u_2(s_1, s_2) \geq \sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2)u_2(s_1, s'_2) \quad \forall s'_2 \in S_2 \\
\sum_{s_1, s_2 \in S_{1,2}} \sigma(s_1, s_2) = 1
\]

Properties:

- the objective is the same as in the MILP case (or multiple LPs) case,
- strategy \(\sigma\) does not necessarily corresponds to Stackelberg equilibrium (the follower can receive multiple recommendations that are best responses).
We can define a Stackelberg extension of EFCE [2] – the leader (1) controls the correlation device, (2) sends signals to the follower, (3) maximizes her expected utility.
We can follow the same steps [3]:

- consider an algorithm for computing an optimal EFCE in an EFGs
- remove the incentives constraints of the leader
- add objective to maximize the expected value of the leader
- restrict the recommendations to the follower so that only a unique action in an information set
(besides the books)

